Abstract

In this research paper, in a major departure from conventional 2D micromachining processes, design and fabrication of a 3D compound eye system consisting of a 3D microprism array, an aperture array, and a microlens array were investigated. Specifically, the 3D microprism array on a curved surface was designed to steer the incident light from all three dimensions to a 2D plane for image formation. For each microprism, there is a corresponding microlens to focus the refracted light on the image plane. An aperture array was also implemented between the microprism array and the microlens array to eliminate cross-talk among the neighboring channels. In this system, 601 individual micro-assemblies consisting of microprisms and microlenses were constructed in a 20 mm diameter area. In this configuration, the maximum light deviation angle was determined to be 18.43°. This research demonstrated an innovative and integrated approach to fabricating true 3D micro and meso scale optical structures. This work also validated the feasibility of using ultraprecision machining process for 3D microoptical device fabrication. The technology demonstrated in this research has high potentials in optical sensing, vision research and many other optical and photonic applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Franceschini, J. M. Pichon, C. Blanes, and J. M. Brady, “From insect vision to robot vision,” Philos. Trans. R. Soc. London Ser. B 337(1281), 283–294 (1992).
    [CrossRef]
  2. J. Kim, K. H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005).
    [CrossRef] [PubMed]
  3. A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “Artificial neural superposition eye,” Opt. Express 15(19), 11922–11933 (2007).
    [CrossRef] [PubMed]
  4. S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33(11), 3649–3655 (1994).
    [CrossRef]
  5. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40(11), 1806–1813 (2001).
    [CrossRef]
  6. K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to-invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
    [CrossRef]
  7. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, A. Tünnermann, R. Völkel, M. Eisner, and T. Scharf, “Microoptical telescope compound eye,” Opt. Express 13(3), 889–903 (2005).
    [CrossRef] [PubMed]
  8. K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst. 9(1), 32–37 (2000).
    [CrossRef]
  9. R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. Thomas, “High precision target tracking with a compound-eye image sensor,” In: Canadian conference on electrical and computer engineering 2004, San Jose, California, USA(2004).
  10. W. Maddern, and G. Wyeth, “Development of a hemispherical compound eye for egomotion estimation,” In: Australasian Conference on Robotics and Automation 2008, Canberra, Australia (2008).
  11. W.C. Sweatt, D.D. Gill, “Microoptical compound lens,” United States Patent, Patent No.: US 7,286,295 B1, (2007).
  12. F.M. Reininger, “Fiber coupled artificial compound eye,” United States Patent, Patent No.: 7,376,314 B2, (2008)
  13. D. Radtke, J. Duparré, U. D. Zeitner, and A. Tünnermann, “Laser lithographic fabrication and characterization of a spherical artificial compound eye,” Opt. Express 15(6), 3067–3077 (2007).
    [CrossRef] [PubMed]
  14. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
    [CrossRef] [PubMed]
  15. W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
    [CrossRef]
  16. L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19(10), 105010 (2009).
    [CrossRef]
  17. L. Li, A. Y. Yi, C. N. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
    [CrossRef]
  18. A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005).
    [CrossRef] [PubMed]
  19. L. Li, C. Yang, H. Z. Shi, W. C. Liao, H. X. Huang, L. J. Lee, J. M. Castro, and A. Y. Yi, “Design and fabrication of an affordable polymer micromixer for medical and biomedical applications,” Polym. Eng. Sci. 50(8), 1594–1604 (2010).
    [CrossRef]
  20. L. Li, L. J. Lee, J. M. Castro, and A. Y. Yi, “Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider,” J. Micromech. Microeng. 20(3), 035012 (2010).
    [CrossRef]
  21. L. Bergmann, and C. Schaefer, eds., by H. Niedrig, Optics of Waves and Particles (Walter de Gruyter, New York, 1999).
  22. S. H. Hong, K. S. Han, K. J. Byeon, H. Lee, and K. W. Choi, “Fabrication of sub-100 nm sized patterns on curved acryl substrate using a flexible stamp,” Jpn. J. Appl. Phys. 47(5), 3699–3701 (2008).
    [CrossRef]
  23. O. Lima, L. Tan, A. Goel, M. Negahban, and Z. Li, “Creating micro- and nanostructures on tubular and spherical surfaces,” J. Vac. Sci. Technol. B 25(6), 2412–2418 (2007).
    [CrossRef]

2010

L. Li, C. Yang, H. Z. Shi, W. C. Liao, H. X. Huang, L. J. Lee, J. M. Castro, and A. Y. Yi, “Design and fabrication of an affordable polymer micromixer for medical and biomedical applications,” Polym. Eng. Sci. 50(8), 1594–1604 (2010).
[CrossRef]

L. Li, L. J. Lee, J. M. Castro, and A. Y. Yi, “Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider,” J. Micromech. Microeng. 20(3), 035012 (2010).
[CrossRef]

2009

L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19(10), 105010 (2009).
[CrossRef]

2008

S. H. Hong, K. S. Han, K. J. Byeon, H. Lee, and K. W. Choi, “Fabrication of sub-100 nm sized patterns on curved acryl substrate using a flexible stamp,” Jpn. J. Appl. Phys. 47(5), 3699–3701 (2008).
[CrossRef]

2007

2006

L. Li, A. Y. Yi, C. N. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[CrossRef]

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

2005

2003

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[CrossRef]

2001

2000

K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst. 9(1), 32–37 (2000).
[CrossRef]

1996

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to-invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
[CrossRef]

1994

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33(11), 3649–3655 (1994).
[CrossRef]

1992

N. Franceschini, J. M. Pichon, C. Blanes, and J. M. Brady, “From insect vision to robot vision,” Philos. Trans. R. Soc. London Ser. B 337(1281), 283–294 (1992).
[CrossRef]

Araki, T.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[CrossRef]

Benatar, A.

L. Li, A. Y. Yi, C. N. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[CrossRef]

Blanes, C.

N. Franceschini, J. M. Pichon, C. Blanes, and J. M. Brady, “From insect vision to robot vision,” Philos. Trans. R. Soc. London Ser. B 337(1281), 283–294 (1992).
[CrossRef]

Brady, J. M.

N. Franceschini, J. M. Pichon, C. Blanes, and J. M. Brady, “From insect vision to robot vision,” Philos. Trans. R. Soc. London Ser. B 337(1281), 283–294 (1992).
[CrossRef]

Bräuer, A.

Brückner, A.

Byeon, K. J.

S. H. Hong, K. S. Han, K. J. Byeon, H. Lee, and K. W. Choi, “Fabrication of sub-100 nm sized patterns on curved acryl substrate using a flexible stamp,” Jpn. J. Appl. Phys. 47(5), 3699–3701 (2008).
[CrossRef]

Castro, J. M.

L. Li, C. Yang, H. Z. Shi, W. C. Liao, H. X. Huang, L. J. Lee, J. M. Castro, and A. Y. Yi, “Design and fabrication of an affordable polymer micromixer for medical and biomedical applications,” Polym. Eng. Sci. 50(8), 1594–1604 (2010).
[CrossRef]

L. Li, L. J. Lee, J. M. Castro, and A. Y. Yi, “Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider,” J. Micromech. Microeng. 20(3), 035012 (2010).
[CrossRef]

Chen, Y.

L. Li, A. Y. Yi, C. N. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[CrossRef]

Choi, K. W.

S. H. Hong, K. S. Han, K. J. Byeon, H. Lee, and K. W. Choi, “Fabrication of sub-100 nm sized patterns on curved acryl substrate using a flexible stamp,” Jpn. J. Appl. Phys. 47(5), 3699–3701 (2008).
[CrossRef]

Dannberg, P.

Duparré, J.

Eisner, M.

Franceschini, N.

N. Franceschini, J. M. Pichon, C. Blanes, and J. M. Brady, “From insect vision to robot vision,” Philos. Trans. R. Soc. London Ser. B 337(1281), 283–294 (1992).
[CrossRef]

Gao, W.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[CrossRef]

Goel, A.

O. Lima, L. Tan, A. Goel, M. Negahban, and Z. Li, “Creating micro- and nanostructures on tubular and spherical surfaces,” J. Vac. Sci. Technol. B 25(6), 2412–2418 (2007).
[CrossRef]

Grewell, D. A.

L. Li, A. Y. Yi, C. N. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[CrossRef]

Hamanaka, K.

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to-invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
[CrossRef]

Han, K. S.

S. H. Hong, K. S. Han, K. J. Byeon, H. Lee, and K. W. Choi, “Fabrication of sub-100 nm sized patterns on curved acryl substrate using a flexible stamp,” Jpn. J. Appl. Phys. 47(5), 3699–3701 (2008).
[CrossRef]

Hong, S. H.

S. H. Hong, K. S. Han, K. J. Byeon, H. Lee, and K. W. Choi, “Fabrication of sub-100 nm sized patterns on curved acryl substrate using a flexible stamp,” Jpn. J. Appl. Phys. 47(5), 3699–3701 (2008).
[CrossRef]

Hoshino, K.

K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst. 9(1), 32–37 (2000).
[CrossRef]

Huang, C. N.

L. Li, A. Y. Yi, C. N. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[CrossRef]

Huang, H. X.

L. Li, C. Yang, H. Z. Shi, W. C. Liao, H. X. Huang, L. J. Lee, J. M. Castro, and A. Y. Yi, “Design and fabrication of an affordable polymer micromixer for medical and biomedical applications,” Polym. Eng. Sci. 50(8), 1594–1604 (2010).
[CrossRef]

Ichioka, Y.

Ishida, J.

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33(11), 3649–3655 (1994).
[CrossRef]

Ishida, K.

Jeong, K. H.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

J. Kim, K. H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005).
[CrossRef] [PubMed]

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

J. Kim, K. H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005).
[CrossRef] [PubMed]

Kiyono, S.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[CrossRef]

Kondou, N.

Koshi, H.

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to-invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
[CrossRef]

Kumagai, T.

Lee, H.

S. H. Hong, K. S. Han, K. J. Byeon, H. Lee, and K. W. Choi, “Fabrication of sub-100 nm sized patterns on curved acryl substrate using a flexible stamp,” Jpn. J. Appl. Phys. 47(5), 3699–3701 (2008).
[CrossRef]

Lee, L. J.

L. Li, C. Yang, H. Z. Shi, W. C. Liao, H. X. Huang, L. J. Lee, J. M. Castro, and A. Y. Yi, “Design and fabrication of an affordable polymer micromixer for medical and biomedical applications,” Polym. Eng. Sci. 50(8), 1594–1604 (2010).
[CrossRef]

L. Li, L. J. Lee, J. M. Castro, and A. Y. Yi, “Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider,” J. Micromech. Microeng. 20(3), 035012 (2010).
[CrossRef]

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

J. Kim, K. H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Opt. Lett. 30(1), 5–7 (2005).
[CrossRef] [PubMed]

Li, L.

L. Li, C. Yang, H. Z. Shi, W. C. Liao, H. X. Huang, L. J. Lee, J. M. Castro, and A. Y. Yi, “Design and fabrication of an affordable polymer micromixer for medical and biomedical applications,” Polym. Eng. Sci. 50(8), 1594–1604 (2010).
[CrossRef]

L. Li, L. J. Lee, J. M. Castro, and A. Y. Yi, “Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider,” J. Micromech. Microeng. 20(3), 035012 (2010).
[CrossRef]

L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19(10), 105010 (2009).
[CrossRef]

L. Li, A. Y. Yi, C. N. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[CrossRef]

A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005).
[CrossRef] [PubMed]

Li, Z.

O. Lima, L. Tan, A. Goel, M. Negahban, and Z. Li, “Creating micro- and nanostructures on tubular and spherical surfaces,” J. Vac. Sci. Technol. B 25(6), 2412–2418 (2007).
[CrossRef]

Liao, W. C.

L. Li, C. Yang, H. Z. Shi, W. C. Liao, H. X. Huang, L. J. Lee, J. M. Castro, and A. Y. Yi, “Design and fabrication of an affordable polymer micromixer for medical and biomedical applications,” Polym. Eng. Sci. 50(8), 1594–1604 (2010).
[CrossRef]

Lima, O.

O. Lima, L. Tan, A. Goel, M. Negahban, and Z. Li, “Creating micro- and nanostructures on tubular and spherical surfaces,” J. Vac. Sci. Technol. B 25(6), 2412–2418 (2007).
[CrossRef]

Matthes, A.

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Mura, F.

K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst. 9(1), 32–37 (2000).
[CrossRef]

Negahban, M.

O. Lima, L. Tan, A. Goel, M. Negahban, and Z. Li, “Creating micro- and nanostructures on tubular and spherical surfaces,” J. Vac. Sci. Technol. B 25(6), 2412–2418 (2007).
[CrossRef]

Ogata, S.

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33(11), 3649–3655 (1994).
[CrossRef]

Okazaki, Y.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[CrossRef]

Pichon, J. M.

N. Franceschini, J. M. Pichon, C. Blanes, and J. M. Brady, “From insect vision to robot vision,” Philos. Trans. R. Soc. London Ser. B 337(1281), 283–294 (1992).
[CrossRef]

Pshenay-Severin, E.

Radtke, D.

Sasano, T.

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33(11), 3649–3655 (1994).
[CrossRef]

Scharf, T.

Schreiber, P.

Shi, H. Z.

L. Li, C. Yang, H. Z. Shi, W. C. Liao, H. X. Huang, L. J. Lee, J. M. Castro, and A. Y. Yi, “Design and fabrication of an affordable polymer micromixer for medical and biomedical applications,” Polym. Eng. Sci. 50(8), 1594–1604 (2010).
[CrossRef]

Shimoyama, I.

K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst. 9(1), 32–37 (2000).
[CrossRef]

Tan, L.

O. Lima, L. Tan, A. Goel, M. Negahban, and Z. Li, “Creating micro- and nanostructures on tubular and spherical surfaces,” J. Vac. Sci. Technol. B 25(6), 2412–2418 (2007).
[CrossRef]

Tanida, J.

Tünnermann, A.

Völkel, R.

Yamada, K.

Yamanaka, M.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[CrossRef]

Yang, C.

L. Li, C. Yang, H. Z. Shi, W. C. Liao, H. X. Huang, L. J. Lee, J. M. Castro, and A. Y. Yi, “Design and fabrication of an affordable polymer micromixer for medical and biomedical applications,” Polym. Eng. Sci. 50(8), 1594–1604 (2010).
[CrossRef]

Yi, A. Y.

L. Li, C. Yang, H. Z. Shi, W. C. Liao, H. X. Huang, L. J. Lee, J. M. Castro, and A. Y. Yi, “Design and fabrication of an affordable polymer micromixer for medical and biomedical applications,” Polym. Eng. Sci. 50(8), 1594–1604 (2010).
[CrossRef]

L. Li, L. J. Lee, J. M. Castro, and A. Y. Yi, “Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider,” J. Micromech. Microeng. 20(3), 035012 (2010).
[CrossRef]

L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19(10), 105010 (2009).
[CrossRef]

L. Li, A. Y. Yi, C. N. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[CrossRef]

A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005).
[CrossRef] [PubMed]

Zeitner, U. D.

Appl. Opt.

J. Microelectromech. Syst.

K. Hoshino, F. Mura, and I. Shimoyama, “Design and performance of a micro-sized biomorphic compound eye with a scanning retina,” J. Microelectromech. Syst. 9(1), 32–37 (2000).
[CrossRef]

J. Micromech. Microeng.

L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” J. Micromech. Microeng. 19(10), 105010 (2009).
[CrossRef]

L. Li, L. J. Lee, J. M. Castro, and A. Y. Yi, “Improving mixing efficiency of a polymer micromixer by use of a plastic shim divider,” J. Micromech. Microeng. 20(3), 035012 (2010).
[CrossRef]

J. Vac. Sci. Technol. B

O. Lima, L. Tan, A. Goel, M. Negahban, and Z. Li, “Creating micro- and nanostructures on tubular and spherical surfaces,” J. Vac. Sci. Technol. B 25(6), 2412–2418 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

S. H. Hong, K. S. Han, K. J. Byeon, H. Lee, and K. W. Choi, “Fabrication of sub-100 nm sized patterns on curved acryl substrate using a flexible stamp,” Jpn. J. Appl. Phys. 47(5), 3699–3701 (2008).
[CrossRef]

Opt. Eng.

L. Li, A. Y. Yi, C. N. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[CrossRef]

S. Ogata, J. Ishida, and T. Sasano, “Optical sensor array in an artificial compound eye,” Opt. Eng. 33(11), 3649–3655 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to-invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
[CrossRef]

Philos. Trans. R. Soc. London Ser. B

N. Franceschini, J. M. Pichon, C. Blanes, and J. M. Brady, “From insect vision to robot vision,” Philos. Trans. R. Soc. London Ser. B 337(1281), 283–294 (1992).
[CrossRef]

Polym. Eng. Sci.

L. Li, C. Yang, H. Z. Shi, W. C. Liao, H. X. Huang, L. J. Lee, J. M. Castro, and A. Y. Yi, “Design and fabrication of an affordable polymer micromixer for medical and biomedical applications,” Polym. Eng. Sci. 50(8), 1594–1604 (2010).
[CrossRef]

Precis. Eng.

W. Gao, T. Araki, S. Kiyono, Y. Okazaki, and M. Yamanaka, “Precision nano-fabrication and evaluation of a large area sinusoidal grid surface for a surface encoder,” Precis. Eng. 27(3), 289–298 (2003).
[CrossRef]

Science

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

Other

R. Krishnasamy, W. Wong, E. Shen, S. Pepic, R. Hornsey, and P. Thomas, “High precision target tracking with a compound-eye image sensor,” In: Canadian conference on electrical and computer engineering 2004, San Jose, California, USA(2004).

W. Maddern, and G. Wyeth, “Development of a hemispherical compound eye for egomotion estimation,” In: Australasian Conference on Robotics and Automation 2008, Canberra, Australia (2008).

W.C. Sweatt, D.D. Gill, “Microoptical compound lens,” United States Patent, Patent No.: US 7,286,295 B1, (2007).

F.M. Reininger, “Fiber coupled artificial compound eye,” United States Patent, Patent No.: 7,376,314 B2, (2008)

L. Bergmann, and C. Schaefer, eds., by H. Niedrig, Optics of Waves and Particles (Walter de Gruyter, New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Comparison of a 2D artificial compound eye system with the proposed 3D compound eye system.

Fig. 2
Fig. 2

Principal section of the microprism for beam steering.

Fig. 3
Fig. 3

Cross section of the 3D microprism array.

Fig. 4
Fig. 4

(a) The top surface and (b) the bottom surface of the machined 3D microprism array, enlarged details for the top (c) and bottom (d) surface.

Fig. 5
Fig. 5

Ultraprecision machining process for the 3D microprism array.

Fig. 6
Fig. 6

Fabricated parts and the completed system: (a) The front side of the 3D microprism array, (b) The back side of the 3D microprism array, (c) microlens array, and (d) assembled compound eye.

Fig. 7
Fig. 7

Microprism array steering angle measurement, (a) measurement setup, (b) focal spots formed by the deviated light.

Fig. 8
Fig. 8

Steering angle of the microprism array.

Fig. 9
Fig. 9

(a) Setup for the 3D compound eye camera, (b) a computer screen used as the object

Fig. 10
Fig. 10

Images obtained from the 3D compound eye camera.

Fig. 11
Fig. 11

Flipped images of the 6 layers at center.

Fig. 12
Fig. 12

Images obtained without the 3D microprism array [targeting the fish on the far right in Fig. 9 (b)].

Fig. 13
Fig. 13

Comparison of the FOV of the 3D and 2D system using the same amount of channels and at the same distance.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ = I 1 I 1 ' + I 2 ' I 2 = I 1 + I 2 ' A
A = I 1 ' + I 2
A = I 1 ' + I 2 = sin 1 ( 1 n sin I 1 ) + sin 1 ( 1 n sin I 2 ' ) = sin 1 ( 1 n sin K K ) + sin 1 ( 1 n sin A )

Metrics