Abstract

We experimentally compare the effectiveness of three different optical-phase-conjugation-based nonlinearity-compensation strategies on a transmission system employing phase-modulated signals, and hence affected by the Gordon-Mollenauer effect. We demonstrate that it is possible to obtain significant nonlinearity compensation, but that no improvement is obtained using configurations specifically aimed at the compensation of the nonlinear phase noise.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. S. Fludger, T. Duthel, C. Schulien, “Towards Robust 100G Ethernet Transmission” Proceeding LEOS Summer Topical Meetings 2007 Digest of the IEEE, 224–225 (2007).
  2. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
    [CrossRef]
  3. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15(23), 1351–1353 (1990).
    [CrossRef] [PubMed]
  4. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightwave Technol. 25(8), 2033–2043 (2007).
    [CrossRef]
  5. W. Pieper, C. Kurtzke, R. Schnabel, D. Breuer, R. Ludwig, K. Petermann, and H. Weber, “Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier,” Electron. Lett. 30(9), 724–725 (1994).
    [CrossRef]
  6. S. Watanabe and T. Chikama, “Cancellation of four-wave mixing in multichannel fibre transmission by midway optical phase conjugation,” Electron. Lett. 30(14), 1156–1157 (1994).
    [CrossRef]
  7. C. Lorattanasane and K. Kikuchi, “Design theory of long-distance optical transmission systems using midway optical phase conjugation,” J. Lightwave Technol. 15(6), 948–955 (1997).
    [CrossRef]
  8. P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
    [CrossRef]
  9. P. Minzioni, “Nonlinearity Compensation in a Fiber-Optic Link by Optical Phase Conjugation,” Fiber Integr. Opt. 28(3), 179–209 (2009).
    [CrossRef]
  10. C. J. McKinstrie, S. Radic, and C. Xie, “Reduction of Soliton Phase Jitter by In-Line Phase Conjugation,” Opt. Lett. 28(17), 1519–1521 (2003).
    [CrossRef] [PubMed]
  11. S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by mid-link spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
    [CrossRef]
  12. S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phaseshift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
    [CrossRef]
  13. P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photon. J. 2(3), 284–291 (2010).
    [CrossRef]
  14. G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73(2), 136–138 (1998).
    [CrossRef]
  15. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998).
    [CrossRef]
  16. M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16(23), 1844–1846 (1991).
    [CrossRef] [PubMed]
  17. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-Optical Signal Processing Using χ2 Nonlinearities in Guided-Wave Devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
    [CrossRef]
  18. T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique” IEEE Photon, Technol. Lett. 5(8), 947–949 (1993).
    [CrossRef]
  19. P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-Optical Wavelength Conversion of a 100-Gb/s Polarization-Multiplexed Signal,” Opt. Express 17(20), 17758–17763 (2009).
    [CrossRef] [PubMed]
  20. S. L. Jansen, S. Spalter, G. D. Khoe, H. de Waardt, H. E. Escobar, L. Marshall, and M. Sher, “6x40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett. 16(7), 1763–1765 (2004).
    [CrossRef]
  21. P. Minzioni and A. Schiffini, “Unifying theory of compensation techniques for intrachannel nonlinear effects,” Opt. Express 13(21), 8460–8468 (2005).
    [CrossRef] [PubMed]
  22. L. Marazzi, P. Parolari, P. Martelli, A. Gatto, M. Martinelli, P. Minzioni, I. Cristiani, V. Degiorgio, “Impact of OPC insertion in a WDM link”, CLEO Europe 2007, paper CI_17 (2007).

2010

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photon. J. 2(3), 284–291 (2010).
[CrossRef]

2009

2007

2006

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phaseshift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-Optical Signal Processing Using χ2 Nonlinearities in Guided-Wave Devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[CrossRef]

2005

P. Minzioni and A. Schiffini, “Unifying theory of compensation techniques for intrachannel nonlinear effects,” Opt. Express 13(21), 8460–8468 (2005).
[CrossRef] [PubMed]

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by mid-link spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[CrossRef]

2004

S. L. Jansen, S. Spalter, G. D. Khoe, H. de Waardt, H. E. Escobar, L. Marshall, and M. Sher, “6x40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett. 16(7), 1763–1765 (2004).
[CrossRef]

2003

1998

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73(2), 136–138 (1998).
[CrossRef]

1997

C. Lorattanasane and K. Kikuchi, “Design theory of long-distance optical transmission systems using midway optical phase conjugation,” J. Lightwave Technol. 15(6), 948–955 (1997).
[CrossRef]

1994

W. Pieper, C. Kurtzke, R. Schnabel, D. Breuer, R. Ludwig, K. Petermann, and H. Weber, “Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier,” Electron. Lett. 30(9), 724–725 (1994).
[CrossRef]

S. Watanabe and T. Chikama, “Cancellation of four-wave mixing in multichannel fibre transmission by midway optical phase conjugation,” Electron. Lett. 30(14), 1156–1157 (1994).
[CrossRef]

1993

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique” IEEE Photon, Technol. Lett. 5(8), 947–949 (1993).
[CrossRef]

1991

1990

Arbore, M. A.

Banfi, G. P.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73(2), 136–138 (1998).
[CrossRef]

Boffi, P.

Bortz, M. L.

Breuer, D.

W. Pieper, C. Kurtzke, R. Schnabel, D. Breuer, R. Ludwig, K. Petermann, and H. Weber, “Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier,” Electron. Lett. 30(9), 724–725 (1994).
[CrossRef]

Calabrò, S.

Chikama, T.

S. Watanabe and T. Chikama, “Cancellation of four-wave mixing in multichannel fibre transmission by midway optical phase conjugation,” Electron. Lett. 30(14), 1156–1157 (1994).
[CrossRef]

Chou, M. H.

Cristiani, I.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photon. J. 2(3), 284–291 (2010).
[CrossRef]

P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-Optical Wavelength Conversion of a 100-Gb/s Polarization-Multiplexed Signal,” Opt. Express 17(20), 17758–17763 (2009).
[CrossRef] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

Datta, P. K.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73(2), 136–138 (1998).
[CrossRef]

de Waardt, H.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phaseshift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by mid-link spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[CrossRef]

S. L. Jansen, S. Spalter, G. D. Khoe, H. de Waardt, H. E. Escobar, L. Marshall, and M. Sher, “6x40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett. 16(7), 1763–1765 (2004).
[CrossRef]

Degiorgio, V.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photon. J. 2(3), 284–291 (2010).
[CrossRef]

P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-Optical Wavelength Conversion of a 100-Gb/s Polarization-Multiplexed Signal,” Opt. Express 17(20), 17758–17763 (2009).
[CrossRef] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73(2), 136–138 (1998).
[CrossRef]

Escobar, H. E.

S. L. Jansen, S. Spalter, G. D. Khoe, H. de Waardt, H. E. Escobar, L. Marshall, and M. Sher, “6x40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett. 16(7), 1763–1765 (2004).
[CrossRef]

Essiambre, R.-J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Fejer, M. M.

Ferrario, M.

Fortusini, D.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73(2), 136–138 (1998).
[CrossRef]

Gordon, J. P.

Hasegawa, T.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique” IEEE Photon, Technol. Lett. 5(8), 947–949 (1993).
[CrossRef]

Hauden, J.

Inoue, K.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique” IEEE Photon, Technol. Lett. 5(8), 947–949 (1993).
[CrossRef]

Ip, E.

Jansen, S. L.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phaseshift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by mid-link spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[CrossRef]

S. L. Jansen, S. Spalter, G. D. Khoe, H. de Waardt, H. E. Escobar, L. Marshall, and M. Sher, “6x40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett. 16(7), 1763–1765 (2004).
[CrossRef]

Kahn, J. M.

Khoe, G. D.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phaseshift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by mid-link spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[CrossRef]

S. L. Jansen, S. Spalter, G. D. Khoe, H. de Waardt, H. E. Escobar, L. Marshall, and M. Sher, “6x40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett. 16(7), 1763–1765 (2004).
[CrossRef]

Kikuchi, K.

C. Lorattanasane and K. Kikuchi, “Design theory of long-distance optical transmission systems using midway optical phase conjugation,” J. Lightwave Technol. 15(6), 948–955 (1997).
[CrossRef]

Krummrich, P. M.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phaseshift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by mid-link spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[CrossRef]

Kumar, S.

Kurtzke, C.

W. Pieper, C. Kurtzke, R. Schnabel, D. Breuer, R. Ludwig, K. Petermann, and H. Weber, “Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier,” Electron. Lett. 30(9), 724–725 (1994).
[CrossRef]

Langrock, C.

Lorattanasane, C.

C. Lorattanasane and K. Kikuchi, “Design theory of long-distance optical transmission systems using midway optical phase conjugation,” J. Lightwave Technol. 15(6), 948–955 (1997).
[CrossRef]

Ludwig, R.

W. Pieper, C. Kurtzke, R. Schnabel, D. Breuer, R. Ludwig, K. Petermann, and H. Weber, “Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier,” Electron. Lett. 30(9), 724–725 (1994).
[CrossRef]

Marazzi, L.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photon. J. 2(3), 284–291 (2010).
[CrossRef]

P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-Optical Wavelength Conversion of a 100-Gb/s Polarization-Multiplexed Signal,” Opt. Express 17(20), 17758–17763 (2009).
[CrossRef] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

Marshall, L.

S. L. Jansen, S. Spalter, G. D. Khoe, H. de Waardt, H. E. Escobar, L. Marshall, and M. Sher, “6x40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett. 16(7), 1763–1765 (2004).
[CrossRef]

Martelli, P.

Martinelli, M.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photon. J. 2(3), 284–291 (2010).
[CrossRef]

P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-Optical Wavelength Conversion of a 100-Gb/s Polarization-Multiplexed Signal,” Opt. Express 17(20), 17758–17763 (2009).
[CrossRef] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

McGeehan, J. E.

McKinstrie, C. J.

Minzioni, P.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photon. J. 2(3), 284–291 (2010).
[CrossRef]

P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-Optical Wavelength Conversion of a 100-Gb/s Polarization-Multiplexed Signal,” Opt. Express 17(20), 17758–17763 (2009).
[CrossRef] [PubMed]

P. Minzioni, “Nonlinearity Compensation in a Fiber-Optic Link by Optical Phase Conjugation,” Fiber Integr. Opt. 28(3), 179–209 (2009).
[CrossRef]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

P. Minzioni and A. Schiffini, “Unifying theory of compensation techniques for intrachannel nonlinear effects,” Opt. Express 13(21), 8460–8468 (2005).
[CrossRef] [PubMed]

Mollenauer, L. F.

Monsalve, C. C.

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by mid-link spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[CrossRef]

Oda, K.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique” IEEE Photon, Technol. Lett. 5(8), 947–949 (1993).
[CrossRef]

Parolari, P.

Petermann, K.

W. Pieper, C. Kurtzke, R. Schnabel, D. Breuer, R. Ludwig, K. Petermann, and H. Weber, “Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier,” Electron. Lett. 30(9), 724–725 (1994).
[CrossRef]

Pieper, W.

W. Pieper, C. Kurtzke, R. Schnabel, D. Breuer, R. Ludwig, K. Petermann, and H. Weber, “Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier,” Electron. Lett. 30(9), 724–725 (1994).
[CrossRef]

Pusino, V.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photon. J. 2(3), 284–291 (2010).
[CrossRef]

P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-Optical Wavelength Conversion of a 100-Gb/s Polarization-Multiplexed Signal,” Opt. Express 17(20), 17758–17763 (2009).
[CrossRef] [PubMed]

Radic, S.

Schiffini, A.

Schnabel, R.

W. Pieper, C. Kurtzke, R. Schnabel, D. Breuer, R. Ludwig, K. Petermann, and H. Weber, “Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier,” Electron. Lett. 30(9), 724–725 (1994).
[CrossRef]

Sher, M.

S. L. Jansen, S. Spalter, G. D. Khoe, H. de Waardt, H. E. Escobar, L. Marshall, and M. Sher, “6x40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett. 16(7), 1763–1765 (2004).
[CrossRef]

Siano, R.

Sohler, W.

Spalter, S.

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by mid-link spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[CrossRef]

S. L. Jansen, S. Spalter, G. D. Khoe, H. de Waardt, H. E. Escobar, L. Marshall, and M. Sher, “6x40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett. 16(7), 1763–1765 (2004).
[CrossRef]

Spinnler, B.

Suche, H.

van den Borne, D.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul phaseshift-keyed transmission,” J. Lightwave Technol. 24(1), 54–64 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by mid-link spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[CrossRef]

Watanabe, S.

S. Watanabe and T. Chikama, “Cancellation of four-wave mixing in multichannel fibre transmission by midway optical phase conjugation,” Electron. Lett. 30(14), 1156–1157 (1994).
[CrossRef]

Weber, H.

W. Pieper, C. Kurtzke, R. Schnabel, D. Breuer, R. Ludwig, K. Petermann, and H. Weber, “Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier,” Electron. Lett. 30(9), 724–725 (1994).
[CrossRef]

Willner, A. E.

Winzer, P. J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Xie, C.

Appl. Phys. Lett.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett. 73(2), 136–138 (1998).
[CrossRef]

Electron. Lett.

W. Pieper, C. Kurtzke, R. Schnabel, D. Breuer, R. Ludwig, K. Petermann, and H. Weber, “Nonlinearity-insensitive standard-fibre transmission based on optical-phase conjugation in a semiconductor-laser amplifier,” Electron. Lett. 30(9), 724–725 (1994).
[CrossRef]

S. Watanabe and T. Chikama, “Cancellation of four-wave mixing in multichannel fibre transmission by midway optical phase conjugation,” Electron. Lett. 30(14), 1156–1157 (1994).
[CrossRef]

Fiber Integr. Opt.

P. Minzioni, “Nonlinearity Compensation in a Fiber-Optic Link by Optical Phase Conjugation,” Fiber Integr. Opt. 28(3), 179–209 (2009).
[CrossRef]

IEEE Photon, Technol. Lett.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique” IEEE Photon, Technol. Lett. 5(8), 947–949 (1993).
[CrossRef]

IEEE Photon. J.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, and V. Degiorgio, “Study of the Gordon-Mollenauer Effect and of the Optical-Phase-Conjugation Compensation Method in Phase-Modulated Optical Communication Systems,” IEEE Photon. J. 2(3), 284–291 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, C. C. Monsalve, S. Spalter, P. M. Krummrich, G. D. Khoe, and H. de Waardt, “Reduction of Gordon-Mollenauer phase noise by mid-link spectral inversion,” IEEE Photon. Technol. Lett. 17(4), 923–925 (2005).
[CrossRef]

S. L. Jansen, S. Spalter, G. D. Khoe, H. de Waardt, H. E. Escobar, L. Marshall, and M. Sher, “6x40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett. 16(7), 1763–1765 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Proc. IEEE

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[CrossRef]

Other

C. R. S. Fludger, T. Duthel, C. Schulien, “Towards Robust 100G Ethernet Transmission” Proceeding LEOS Summer Topical Meetings 2007 Digest of the IEEE, 224–225 (2007).

L. Marazzi, P. Parolari, P. Martelli, A. Gatto, M. Martinelli, P. Minzioni, I. Cristiani, V. Degiorgio, “Impact of OPC insertion in a WDM link”, CLEO Europe 2007, paper CI_17 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The setup of employed transmitter and receiver are shown in a) and b) respectively.

Fig. 2
Fig. 2

Structure of the different transmission links: depending on the considered configuration, we modified the position of the OPC and of the required dispersion compensating units. The experimental arrangement used for MSSI, MNTI and GMC are shown in a), b) and c) respectively. The length reported in each dispersion compensating module (DCM) block indicates the number of fiber km that must be compensated by each element.

Fig. 3
Fig. 3

Scheme of the OPC set-up. ADM indicates add-drop multiplexer, while the 4-port PBSC device can be conceptually seen as the cascade of a polarization beam splitter and a circulator.

Fig. 4
Fig. 4

Experimental BER of the NRZ-DPSK 10-Gb/s System, showing OPC penalty in BTB configuration and performance after propagation of MNTI, MSSI, and GMC approach. For the BER axis a logarithmic scale has been used.

Fig. 5
Fig. 5

BER measurements at the receiver performed on a 10-Gbit/s RZ-DPSK signal. For the BER axis a logarithmic scale has been used.

Metrics