Abstract

We demonstrate a tunable mode-locked semiconductor fiber laser incorporating a nonlinear optical loop mirror and synchronized to an external optical signal at 40 GHz, 80 GHz, and 160 GHz. The laser generates sech2 pulses as short as 2.0 ps, 1.7 ps, and 1.3 ps at 40 GHz, 80 GHz, and 160 GHz, respectively, and is tunable within the C-band. The maximum root-mean-square timing jitter of the laser is 580 fs at 40 GHz and 80 GHz.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
    [CrossRef]
  2. B. Bakhshi and P. A. Andrekson, “40 GHz actively modelocked polarisation maintaining erbium fibre ring laser,” Electron. Lett. 36(5), 411–413 (2000).
    [CrossRef]
  3. E. Yoshida and M. Nakazawa, “80~200 GHz erbium doped fibre laser using a rational harmonic mode-locking technique,” Electron. Lett. 32(15), 1370–1372 (1996).
    [CrossRef]
  4. Y. Shiquan, E. A. Ponomarev, and B. Xiaoyi, “80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photon. Technol. Lett. 17(2), 300–302 (2005).
    [CrossRef]
  5. Y. Shiquan and B. Xiaoyi, “Repetition-rate-multiplication in actively mode-locking fiber laser by using phase modulated fiber loop mirror,” IEEE J. Quantum Electron. 41(10), 1285–1292 (2005).
    [CrossRef]
  6. H. Sun, H. Dong, and N. K. Dutta, “Mode-locked erbium-doped fiber ring laser using intracavity polarization-maintaining loop mirror,” IEEE Photon. Technol. Lett. 18(12), 1311–1313 (2006).
    [CrossRef]
  7. F. Jiaojiao, G. Ying, and G. Shiming, “Pulse-amplitude equalization of a rational harmonic mode-locked fiber laser through low-order harmonic suppression,” in Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, 2009. CLEO/PACIFIC RIM '09. Conference on, 2009), 1–2.
  8. K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, “Ultrafast semiconductor-based fiber laser sources,” IEEE J. Sel. Top. Quantum Electron. 10(1), 147–154 (2004).
    [CrossRef]
  9. L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19(10), 720–722 (2007).
    [CrossRef]
  10. S. Bigo and E. Desurvire, “20 GHz all-optical clock recovery based on fibre laser mode-locking with fibre nonlinear loop mirror as variable intensity/phase modulator,” Electron. Lett. 31(21), 1855–1857 (1995).
    [CrossRef]
  11. W. W. Tang, C. Shu, and K. L. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator,” IEEE Photon. Technol. Lett. 13(1), 16–18 (2001).
    [CrossRef]
  12. L. Schares, R. Paschotta, L. Occhi, and G. Guekos, “40-GHz mode-locked fiber-ring laser using a Mach-Zehnder interferometer with integrated SOAs,” J. Lightwave Technol. 22(3), 859–873 (2004).
    [CrossRef]
  13. L. Schares, L. Occhi, and G. Guekos, “80-160-GHz mode-locked fiber ring laser synchronized to external optical pulse stream,” IEEE Photon. Technol. Lett. 15(10), 1348–1350 (2003).
    [CrossRef]
  14. T. Cai, L. R. Chen, and M. Rochette, “Tunable 40 GHz mode-locked semiconductor fiber laser using a nonlinear optical loop mirror,” in LEOS Annual Meeting Conference Proceedings, 2009. LEOS '09. IEEE, 2009), 783–784.
  15. K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26(14), 962–964 (1990).
    [CrossRef]

2007

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19(10), 720–722 (2007).
[CrossRef]

2006

H. Sun, H. Dong, and N. K. Dutta, “Mode-locked erbium-doped fiber ring laser using intracavity polarization-maintaining loop mirror,” IEEE Photon. Technol. Lett. 18(12), 1311–1313 (2006).
[CrossRef]

2005

Y. Shiquan, E. A. Ponomarev, and B. Xiaoyi, “80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photon. Technol. Lett. 17(2), 300–302 (2005).
[CrossRef]

Y. Shiquan and B. Xiaoyi, “Repetition-rate-multiplication in actively mode-locking fiber laser by using phase modulated fiber loop mirror,” IEEE J. Quantum Electron. 41(10), 1285–1292 (2005).
[CrossRef]

2004

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, “Ultrafast semiconductor-based fiber laser sources,” IEEE J. Sel. Top. Quantum Electron. 10(1), 147–154 (2004).
[CrossRef]

L. Schares, R. Paschotta, L. Occhi, and G. Guekos, “40-GHz mode-locked fiber-ring laser using a Mach-Zehnder interferometer with integrated SOAs,” J. Lightwave Technol. 22(3), 859–873 (2004).
[CrossRef]

2003

L. Schares, L. Occhi, and G. Guekos, “80-160-GHz mode-locked fiber ring laser synchronized to external optical pulse stream,” IEEE Photon. Technol. Lett. 15(10), 1348–1350 (2003).
[CrossRef]

2001

W. W. Tang, C. Shu, and K. L. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator,” IEEE Photon. Technol. Lett. 13(1), 16–18 (2001).
[CrossRef]

2000

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
[CrossRef]

B. Bakhshi and P. A. Andrekson, “40 GHz actively modelocked polarisation maintaining erbium fibre ring laser,” Electron. Lett. 36(5), 411–413 (2000).
[CrossRef]

1996

E. Yoshida and M. Nakazawa, “80~200 GHz erbium doped fibre laser using a rational harmonic mode-locking technique,” Electron. Lett. 32(15), 1370–1372 (1996).
[CrossRef]

1995

S. Bigo and E. Desurvire, “20 GHz all-optical clock recovery based on fibre laser mode-locking with fibre nonlinear loop mirror as variable intensity/phase modulator,” Electron. Lett. 31(21), 1855–1857 (1995).
[CrossRef]

1990

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26(14), 962–964 (1990).
[CrossRef]

Andrekson, P. A.

B. Bakhshi and P. A. Andrekson, “40 GHz actively modelocked polarisation maintaining erbium fibre ring laser,” Electron. Lett. 36(5), 411–413 (2000).
[CrossRef]

Avramopoulos, H.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, “Ultrafast semiconductor-based fiber laser sources,” IEEE J. Sel. Top. Quantum Electron. 10(1), 147–154 (2004).
[CrossRef]

Bakhshi, B.

B. Bakhshi and P. A. Andrekson, “40 GHz actively modelocked polarisation maintaining erbium fibre ring laser,” Electron. Lett. 36(5), 411–413 (2000).
[CrossRef]

Bigo, S.

S. Bigo and E. Desurvire, “20 GHz all-optical clock recovery based on fibre laser mode-locking with fibre nonlinear loop mirror as variable intensity/phase modulator,” Electron. Lett. 31(21), 1855–1857 (1995).
[CrossRef]

Bintjas, C.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, “Ultrafast semiconductor-based fiber laser sources,” IEEE J. Sel. Top. Quantum Electron. 10(1), 147–154 (2004).
[CrossRef]

Blow, K. J.

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26(14), 962–964 (1990).
[CrossRef]

Desurvire, E.

S. Bigo and E. Desurvire, “20 GHz all-optical clock recovery based on fibre laser mode-locking with fibre nonlinear loop mirror as variable intensity/phase modulator,” Electron. Lett. 31(21), 1855–1857 (1995).
[CrossRef]

Dong, H.

H. Sun, H. Dong, and N. K. Dutta, “Mode-locked erbium-doped fiber ring laser using intracavity polarization-maintaining loop mirror,” IEEE Photon. Technol. Lett. 18(12), 1311–1313 (2006).
[CrossRef]

Doran, N. J.

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26(14), 962–964 (1990).
[CrossRef]

Dutta, N. K.

H. Sun, H. Dong, and N. K. Dutta, “Mode-locked erbium-doped fiber ring laser using intracavity polarization-maintaining loop mirror,” IEEE Photon. Technol. Lett. 18(12), 1311–1313 (2006).
[CrossRef]

Guekos, G.

L. Schares, R. Paschotta, L. Occhi, and G. Guekos, “40-GHz mode-locked fiber-ring laser using a Mach-Zehnder interferometer with integrated SOAs,” J. Lightwave Technol. 22(3), 859–873 (2004).
[CrossRef]

L. Schares, L. Occhi, and G. Guekos, “80-160-GHz mode-locked fiber ring laser synchronized to external optical pulse stream,” IEEE Photon. Technol. Lett. 15(10), 1348–1350 (2003).
[CrossRef]

Lee, C. C.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19(10), 720–722 (2007).
[CrossRef]

Lee, K. L.

W. W. Tang, C. Shu, and K. L. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator,” IEEE Photon. Technol. Lett. 13(1), 16–18 (2001).
[CrossRef]

Lu, C.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19(10), 720–722 (2007).
[CrossRef]

Lui, L. F. K.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19(10), 720–722 (2007).
[CrossRef]

Nakazawa, M.

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
[CrossRef]

E. Yoshida and M. Nakazawa, “80~200 GHz erbium doped fibre laser using a rational harmonic mode-locking technique,” Electron. Lett. 32(15), 1370–1372 (1996).
[CrossRef]

Nelson, B. P.

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26(14), 962–964 (1990).
[CrossRef]

Occhi, L.

L. Schares, R. Paschotta, L. Occhi, and G. Guekos, “40-GHz mode-locked fiber-ring laser using a Mach-Zehnder interferometer with integrated SOAs,” J. Lightwave Technol. 22(3), 859–873 (2004).
[CrossRef]

L. Schares, L. Occhi, and G. Guekos, “80-160-GHz mode-locked fiber ring laser synchronized to external optical pulse stream,” IEEE Photon. Technol. Lett. 15(10), 1348–1350 (2003).
[CrossRef]

Paschotta, R.

Pleros, N.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, “Ultrafast semiconductor-based fiber laser sources,” IEEE J. Sel. Top. Quantum Electron. 10(1), 147–154 (2004).
[CrossRef]

Ponomarev, E. A.

Y. Shiquan, E. A. Ponomarev, and B. Xiaoyi, “80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photon. Technol. Lett. 17(2), 300–302 (2005).
[CrossRef]

Schares, L.

L. Schares, R. Paschotta, L. Occhi, and G. Guekos, “40-GHz mode-locked fiber-ring laser using a Mach-Zehnder interferometer with integrated SOAs,” J. Lightwave Technol. 22(3), 859–873 (2004).
[CrossRef]

L. Schares, L. Occhi, and G. Guekos, “80-160-GHz mode-locked fiber ring laser synchronized to external optical pulse stream,” IEEE Photon. Technol. Lett. 15(10), 1348–1350 (2003).
[CrossRef]

Shiquan, Y.

Y. Shiquan, E. A. Ponomarev, and B. Xiaoyi, “80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photon. Technol. Lett. 17(2), 300–302 (2005).
[CrossRef]

Y. Shiquan and B. Xiaoyi, “Repetition-rate-multiplication in actively mode-locking fiber laser by using phase modulated fiber loop mirror,” IEEE J. Quantum Electron. 41(10), 1285–1292 (2005).
[CrossRef]

Shu, C.

W. W. Tang, C. Shu, and K. L. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator,” IEEE Photon. Technol. Lett. 13(1), 16–18 (2001).
[CrossRef]

Sun, H.

H. Sun, H. Dong, and N. K. Dutta, “Mode-locked erbium-doped fiber ring laser using intracavity polarization-maintaining loop mirror,” IEEE Photon. Technol. Lett. 18(12), 1311–1313 (2006).
[CrossRef]

Tam, H. Y.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19(10), 720–722 (2007).
[CrossRef]

Tang, W. W.

W. W. Tang, C. Shu, and K. L. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator,” IEEE Photon. Technol. Lett. 13(1), 16–18 (2001).
[CrossRef]

Vlachos, K.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, “Ultrafast semiconductor-based fiber laser sources,” IEEE J. Sel. Top. Quantum Electron. 10(1), 147–154 (2004).
[CrossRef]

Wai, P. K. A.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19(10), 720–722 (2007).
[CrossRef]

Xiaoyi, B.

Y. Shiquan and B. Xiaoyi, “Repetition-rate-multiplication in actively mode-locking fiber laser by using phase modulated fiber loop mirror,” IEEE J. Quantum Electron. 41(10), 1285–1292 (2005).
[CrossRef]

Y. Shiquan, E. A. Ponomarev, and B. Xiaoyi, “80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photon. Technol. Lett. 17(2), 300–302 (2005).
[CrossRef]

Xu, L.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19(10), 720–722 (2007).
[CrossRef]

Yoshida, E.

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
[CrossRef]

E. Yoshida and M. Nakazawa, “80~200 GHz erbium doped fibre laser using a rational harmonic mode-locking technique,” Electron. Lett. 32(15), 1370–1372 (1996).
[CrossRef]

Electron. Lett.

B. Bakhshi and P. A. Andrekson, “40 GHz actively modelocked polarisation maintaining erbium fibre ring laser,” Electron. Lett. 36(5), 411–413 (2000).
[CrossRef]

E. Yoshida and M. Nakazawa, “80~200 GHz erbium doped fibre laser using a rational harmonic mode-locking technique,” Electron. Lett. 32(15), 1370–1372 (1996).
[CrossRef]

S. Bigo and E. Desurvire, “20 GHz all-optical clock recovery based on fibre laser mode-locking with fibre nonlinear loop mirror as variable intensity/phase modulator,” Electron. Lett. 31(21), 1855–1857 (1995).
[CrossRef]

K. J. Blow, N. J. Doran, and B. P. Nelson, “Demonstration of the nonlinear fibre loop mirror as an ultrafast all-optical demultiplexer,” Electron. Lett. 26(14), 962–964 (1990).
[CrossRef]

IEEE J. Quantum Electron.

Y. Shiquan and B. Xiaoyi, “Repetition-rate-multiplication in actively mode-locking fiber laser by using phase modulated fiber loop mirror,” IEEE J. Quantum Electron. 41(10), 1285–1292 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, “Ultrafast semiconductor-based fiber laser sources,” IEEE J. Sel. Top. Quantum Electron. 10(1), 147–154 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

L. F. K. Lui, L. Xu, C. C. Lee, P. K. A. Wai, H. Y. Tam, and C. Lu, “All-optical clock recovery using erbium-doped fiber laser incorporating an electroabsorption modulator and a linear optical amplifier,” IEEE Photon. Technol. Lett. 19(10), 720–722 (2007).
[CrossRef]

W. W. Tang, C. Shu, and K. L. Lee, “Rational harmonic mode locking of an optically triggered fiber laser incorporating a nonlinear optical loop modulator,” IEEE Photon. Technol. Lett. 13(1), 16–18 (2001).
[CrossRef]

H. Sun, H. Dong, and N. K. Dutta, “Mode-locked erbium-doped fiber ring laser using intracavity polarization-maintaining loop mirror,” IEEE Photon. Technol. Lett. 18(12), 1311–1313 (2006).
[CrossRef]

Y. Shiquan, E. A. Ponomarev, and B. Xiaoyi, “80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,” IEEE Photon. Technol. Lett. 17(2), 300–302 (2005).
[CrossRef]

M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett. 12(12), 1613–1615 (2000).
[CrossRef]

L. Schares, L. Occhi, and G. Guekos, “80-160-GHz mode-locked fiber ring laser synchronized to external optical pulse stream,” IEEE Photon. Technol. Lett. 15(10), 1348–1350 (2003).
[CrossRef]

J. Lightwave Technol.

Other

F. Jiaojiao, G. Ying, and G. Shiming, “Pulse-amplitude equalization of a rational harmonic mode-locked fiber laser through low-order harmonic suppression,” in Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, 2009. CLEO/PACIFIC RIM '09. Conference on, 2009), 1–2.

T. Cai, L. R. Chen, and M. Rochette, “Tunable 40 GHz mode-locked semiconductor fiber laser using a nonlinear optical loop mirror,” in LEOS Annual Meeting Conference Proceedings, 2009. LEOS '09. IEEE, 2009), 783–784.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. NOLM: nonlinear optical loop mirror, SFL: semiconductor fiber laser, PC: polarization controller, ISO: isolators, TBPF: tunable bandpass filter, TODL: tunable optical delay, VOA: variable optical attenuator, MLL: mode-locked fiber laser.

Fig. 2
Fig. 2

SFL output characteristics at 40 GHz. Pulse width and rms timing jitter as a function of (a) TBPF bandwidth for a central wavelength of 1558 nm and (b) output wavelength for a TBPF bandwidth of 300 GHz.

Fig. 3
Fig. 3

(a) Output spectrum, (b) waveform, and (c) autocorrelation with sech2 fit of the SFL output at 40 GHz with the TBPF centered at 1558 nm and with a bandwidth of 300 GHz.

Fig. 4
Fig. 4

SFL output characteristics at 80 GHz. Pulse width and rms timing jitter as a function of (a) TBPF bandwidth for a central wavelength of 1558 nm and (b) output wavelength for a TBPF bandwidth of 500 GHz. The solid points refer to a pump at 1535 nm while the hollow points refer to a pump at 1559 nm.

Fig. 5
Fig. 5

(a) Output spectrum, (b) waveform, and (c) autocorrelation with sech2 fit of the SFL output at 80 GHz with the TBPF centered at 1558 nm and with a bandwidth of 500 GHz.

Fig. 6
Fig. 6

(a) Output spectrum and (b) autocorrelation with sech2 fit of the SFL output at 160 GHz with the TBPF centered at 1546 nm and with a bandwidth of 700 GHz.

Metrics