Abstract

We present the design of an invisible metamaterial fibre operating at optical frequencies, which could be fabricated by adapting existing fibre drawing techniques. The invisibility is realised by matching the refractive index of the metamaterial fibre with the surroundings. We present a general recipe for the fabrication of such fibres, and numerically characterise a specific example using hexagonally arranged silver nanowires in a silica background. We find that invisibility is highly sensitive to details of the metamaterial boundary, a problem that is likely to affect most invisibility and cloaking schemes.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ward, “Towards invisible glass,” Vacuum 22(9), 369–375 (1972).
    [CrossRef]
  2. R. L. Fante, M. T. McCormack, T. D. Syst, and M. A. Wilmington, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988).
    [CrossRef]
  3. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
    [CrossRef] [PubMed]
  4. A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15(6), 3318–3332 (2007).
    [CrossRef] [PubMed]
  5. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
    [CrossRef] [PubMed]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  8. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  9. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
    [CrossRef] [PubMed]
  10. N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
    [CrossRef] [PubMed]
  11. W.-H. Sun, Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, “Omnidirectional transparency induced by matched impedance in disordered metamaterials,” J. Appl. Phys. 106(1), 013104 (2009).
    [CrossRef]
  12. Y. Fang and S. He, “Transparent structure consisting of metamaterial layers and matching layers,” Phys. Rev. A 78(2), 023813 (2008).
    [CrossRef]
  13. C. Yang, J. Yang, M. Huang, J. Shi, and J. Peng, “Electromagnetic cylindrical transparent devices with irregular cross section,” Radioengineering 19, 136–140 (2010).
  14. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
    [CrossRef] [PubMed]
  15. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
    [CrossRef]
  16. M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
    [CrossRef]
  17. Y. Ruan, H. Ebendorff-Heidepriem, and T. M. Monro, “Subwavelength soft glass fibres with extremely small hole size for field enhancement,” in Proceedings of the Australasian Conference on Optics, Lasers and Spectroscopy and Australian Conference on Optical Fibre Technology (Adelaide, Australia, 2009).
  18. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  19. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
    [CrossRef]
  20. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17(17), 14851–14864 (2009).
    [CrossRef] [PubMed]
  21. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
    [CrossRef]
  22. A. Tuniz, P. Chen, B. T. Kuhlmey, and S. C. Fleming, “Design of an optical hyperlens with metallic nanocylinders,” in Proceedings of META '10, 2nd International Conference on Metamaterials, Photonc Crystals and Plasmonics (Cairo, Egypt, 2010).
  23. P. Markos, and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, 2008), Chap. 14.
  24. R. C. McPhedran, N. A. Nicorovici, and L. C. Botten, “The TEM mode and homogenization of doubly periodic structures,” J. Electromagn. Waves Appl. 11(7), 981–1012 (1997).
    [CrossRef]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  26. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1208 (1965).
    [CrossRef]
  27. R. C. McPhedran, C. G. Poulton, N. A. Nicorovici, and A. B. Movchan, “Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material,” Proc. R. Soc. Lond. A 452(1953), 2231–2245 (1996).
    [CrossRef]
  28. L. C. Botten, N. A. P. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. de Sterke, and P. A. Robinson, “Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method,” J. Opt. Soc. Am. A 17(12), 2165–2176 (2000).
    [CrossRef]
  29. R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and K. A. Grubits, “Lattice sums for gratings and arrays,” J. Math. Phys. 41(11), 7808–7816 (2000).
    [CrossRef]
  30. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. De Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19(10), 2322–2330 (2002).
    [CrossRef]
  31. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19(10), 2331–2340 (2002).
    [CrossRef]
  32. D. Felbacq, G. Tayeb, and D. Maystre, “Scattering by a random set of parallel cylinders,” J. Opt. Soc. Am. A 11(9), 2526–2538 (1994).
    [CrossRef]
  33. P. S. Kildal, A. A. Kishk, and A. Tengs, “Reduction of forward scattering from cylindrical objects using hardsurfaces,” IEEE Trans. Antenn. Propag. 44(11), 1509–1520 (1996).
    [CrossRef]
  34. E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar cross section (New York: SciTech Publishing, 2004), Chapter 3.

2010 (4)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

C. Yang, J. Yang, M. Huang, J. Shi, and J. Peng, “Electromagnetic cylindrical transparent devices with irregular cross section,” Radioengineering 19, 136–140 (2010).

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
[CrossRef]

2009 (4)

W.-H. Sun, Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, “Omnidirectional transparency induced by matched impedance in disordered metamaterials,” J. Appl. Phys. 106(1), 013104 (2009).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17(17), 14851–14864 (2009).
[CrossRef] [PubMed]

2008 (4)

J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
[CrossRef] [PubMed]

Y. Fang and S. He, “Transparent structure consisting of metamaterial layers and matching layers,” Phys. Rev. A 78(2), 023813 (2008).
[CrossRef]

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
[CrossRef]

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

2007 (2)

2006 (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

2003 (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

2002 (2)

2000 (2)

1997 (1)

R. C. McPhedran, N. A. Nicorovici, and L. C. Botten, “The TEM mode and homogenization of doubly periodic structures,” J. Electromagn. Waves Appl. 11(7), 981–1012 (1997).
[CrossRef]

1996 (2)

R. C. McPhedran, C. G. Poulton, N. A. Nicorovici, and A. B. Movchan, “Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material,” Proc. R. Soc. Lond. A 452(1953), 2231–2245 (1996).
[CrossRef]

P. S. Kildal, A. A. Kishk, and A. Tengs, “Reduction of forward scattering from cylindrical objects using hardsurfaces,” IEEE Trans. Antenn. Propag. 44(11), 1509–1520 (1996).
[CrossRef]

1994 (1)

1988 (1)

R. L. Fante, M. T. McCormack, T. D. Syst, and M. A. Wilmington, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988).
[CrossRef]

1972 (2)

J. Ward, “Towards invisible glass,” Vacuum 22(9), 369–375 (1972).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1965 (1)

Alù, A.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15(6), 3318–3332 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Anthony, J.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

Asatryan, A. A.

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Bird, D.

Boltasseva, A.

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
[CrossRef]

Botten, L. C.

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Cao, L.-S.

W.-H. Sun, Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, “Omnidirectional transparency induced by matched impedance in disordered metamaterials,” J. Appl. Phys. 106(1), 013104 (2009).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

de Sterke, C. M.

Edwards, B.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

Engheta, N.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15(6), 3318–3332 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Fang, Y.

Y. Fang and S. He, “Transparent structure consisting of metamaterial layers and matching layers,” Phys. Rev. A 78(2), 023813 (2008).
[CrossRef]

Fante, R. L.

R. L. Fante, M. T. McCormack, T. D. Syst, and M. A. Wilmington, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988).
[CrossRef]

Felbacq, D.

Fleming, S. C.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

George, A.

Grubits, K. A.

R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and K. A. Grubits, “Lattice sums for gratings and arrays,” J. Math. Phys. 41(11), 7808–7816 (2000).
[CrossRef]

He, S.

Y. Fang and S. He, “Transparent structure consisting of metamaterial layers and matching layers,” Phys. Rev. A 78(2), 023813 (2008).
[CrossRef]

Hou, J.

Huang, M.

C. Yang, J. Yang, M. Huang, J. Shi, and J. Peng, “Electromagnetic cylindrical transparent devices with irregular cross section,” Radioengineering 19, 136–140 (2010).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kildal, P. S.

P. S. Kildal, A. A. Kishk, and A. Tengs, “Reduction of forward scattering from cylindrical objects using hardsurfaces,” IEEE Trans. Antenn. Propag. 44(11), 1509–1520 (1996).
[CrossRef]

Kishk, A. A.

P. S. Kildal, A. A. Kishk, and A. Tengs, “Reduction of forward scattering from cylindrical objects using hardsurfaces,” IEEE Trans. Antenn. Propag. 44(11), 1509–1520 (1996).
[CrossRef]

Knight, J. C.

Kuhlmey, B. T.

Leonhardt, R.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

Li, D.

W.-H. Sun, Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, “Omnidirectional transparency induced by matched impedance in disordered metamaterials,” J. Appl. Phys. 106(1), 013104 (2009).
[CrossRef]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Liu, Z.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
[CrossRef]

Lu, Y.

W.-H. Sun, Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, “Omnidirectional transparency induced by matched impedance in disordered metamaterials,” J. Appl. Phys. 106(1), 013104 (2009).
[CrossRef]

Lwin, R.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

Maier, S.

Malitson, I. H.

Maystre, D.

McCormack, M. T.

R. L. Fante, M. T. McCormack, T. D. Syst, and M. A. Wilmington, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988).
[CrossRef]

McPhedran, R. C.

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19(10), 2331–2340 (2002).
[CrossRef]

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. De Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19(10), 2322–2330 (2002).
[CrossRef]

L. C. Botten, N. A. P. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. de Sterke, and P. A. Robinson, “Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method,” J. Opt. Soc. Am. A 17(12), 2165–2176 (2000).
[CrossRef]

R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and K. A. Grubits, “Lattice sums for gratings and arrays,” J. Math. Phys. 41(11), 7808–7816 (2000).
[CrossRef]

R. C. McPhedran, N. A. Nicorovici, and L. C. Botten, “The TEM mode and homogenization of doubly periodic structures,” J. Electromagn. Waves Appl. 11(7), 981–1012 (1997).
[CrossRef]

R. C. McPhedran, C. G. Poulton, N. A. Nicorovici, and A. B. Movchan, “Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material,” Proc. R. Soc. Lond. A 452(1953), 2231–2245 (1996).
[CrossRef]

Mei, Y.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
[CrossRef]

Milton, G. W.

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Mortensen, N. A.

Movchan, A. B.

R. C. McPhedran, C. G. Poulton, N. A. Nicorovici, and A. B. Movchan, “Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material,” Proc. R. Soc. Lond. A 452(1953), 2231–2245 (1996).
[CrossRef]

Nicorovici, N. A.

N. A. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C. Botten, “Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance,” Opt. Express 15(10), 6314–6323 (2007).
[CrossRef] [PubMed]

R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and K. A. Grubits, “Lattice sums for gratings and arrays,” J. Math. Phys. 41(11), 7808–7816 (2000).
[CrossRef]

R. C. McPhedran, N. A. Nicorovici, and L. C. Botten, “The TEM mode and homogenization of doubly periodic structures,” J. Electromagn. Waves Appl. 11(7), 981–1012 (1997).
[CrossRef]

R. C. McPhedran, C. G. Poulton, N. A. Nicorovici, and A. B. Movchan, “Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material,” Proc. R. Soc. Lond. A 452(1953), 2231–2245 (1996).
[CrossRef]

Nicorovici, N. A. P.

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Peng, J.

C. Yang, J. Yang, M. Huang, J. Shi, and J. Peng, “Electromagnetic cylindrical transparent devices with irregular cross section,” Radioengineering 19, 136–140 (2010).

Peng, R.-W.

W.-H. Sun, Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, “Omnidirectional transparency induced by matched impedance in disordered metamaterials,” J. Appl. Phys. 106(1), 013104 (2009).
[CrossRef]

Poulton, C. G.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

R. C. McPhedran, C. G. Poulton, N. A. Nicorovici, and A. B. Movchan, “Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material,” Proc. R. Soc. Lond. A 452(1953), 2231–2245 (1996).
[CrossRef]

Prill Sempere, L. N.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Renversez, G.

Robinson, P. A.

Russell, P. S. J.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Schmidt, M. A.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Schmidt, O. G.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
[CrossRef]

Shi, J.

C. Yang, J. Yang, M. Huang, J. Shi, and J. Peng, “Electromagnetic cylindrical transparent devices with irregular cross section,” Radioengineering 19, 136–140 (2010).

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Smith, E. J.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Sun, W.-H.

W.-H. Sun, Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, “Omnidirectional transparency induced by matched impedance in disordered metamaterials,” J. Appl. Phys. 106(1), 013104 (2009).
[CrossRef]

Syst, T. D.

R. L. Fante, M. T. McCormack, T. D. Syst, and M. A. Wilmington, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988).
[CrossRef]

Tayeb, G.

Tengs, A.

P. S. Kildal, A. A. Kishk, and A. Tengs, “Reduction of forward scattering from cylindrical objects using hardsurfaces,” IEEE Trans. Antenn. Propag. 44(11), 1509–1520 (1996).
[CrossRef]

Tuniz, A.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

Tyagi, H. K.

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Wang, A.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

Wang, M.

W.-H. Sun, Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, “Omnidirectional transparency induced by matched impedance in disordered metamaterials,” J. Appl. Phys. 106(1), 013104 (2009).
[CrossRef]

Ward, J.

J. Ward, “Towards invisible glass,” Vacuum 22(9), 369–375 (1972).
[CrossRef]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

White, T. P.

Wilmington, M. A.

R. L. Fante, M. T. McCormack, T. D. Syst, and M. A. Wilmington, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988).
[CrossRef]

Wu, X.

W.-H. Sun, Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, “Omnidirectional transparency induced by matched impedance in disordered metamaterials,” J. Appl. Phys. 106(1), 013104 (2009).
[CrossRef]

Yan, M.

Yang, C.

C. Yang, J. Yang, M. Huang, J. Shi, and J. Peng, “Electromagnetic cylindrical transparent devices with irregular cross section,” Radioengineering 19, 136–140 (2010).

Yang, J.

C. Yang, J. Yang, M. Huang, J. Shi, and J. Peng, “Electromagnetic cylindrical transparent devices with irregular cross section,” Radioengineering 19, 136–140 (2010).

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett. 96(19), 191101 (2010).
[CrossRef]

IEEE Trans. Antenn. Propag. (2)

R. L. Fante, M. T. McCormack, T. D. Syst, and M. A. Wilmington, “Reflection properties of the Salisbury screen,” IEEE Trans. Antenn. Propag. 36(10), 1443–1454 (1988).
[CrossRef]

P. S. Kildal, A. A. Kishk, and A. Tengs, “Reduction of forward scattering from cylindrical objects using hardsurfaces,” IEEE Trans. Antenn. Propag. 44(11), 1509–1520 (1996).
[CrossRef]

J. Appl. Phys. (1)

W.-H. Sun, Y. Lu, R.-W. Peng, L.-S. Cao, D. Li, X. Wu, and M. Wang, “Omnidirectional transparency induced by matched impedance in disordered metamaterials,” J. Appl. Phys. 106(1), 013104 (2009).
[CrossRef]

J. Electromagn. Waves Appl. (1)

R. C. McPhedran, N. A. Nicorovici, and L. C. Botten, “The TEM mode and homogenization of doubly periodic structures,” J. Electromagn. Waves Appl. 11(7), 981–1012 (1997).
[CrossRef]

J. Math. Phys. (1)

R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and K. A. Grubits, “Lattice sums for gratings and arrays,” J. Math. Phys. 41(11), 7808–7816 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

Metamaterials (Amst.) (1)

A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials (Amst.) 2(1), 1–17 (2008).
[CrossRef]

Nano Lett. (1)

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10(1), 1–5 (2010).
[CrossRef]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rev. A (1)

Y. Fang and S. He, “Transparent structure consisting of metamaterial layers and matching layers,” Phys. Rev. A 78(2), 023813 (2008).
[CrossRef]

Phys. Rev. B (2)

M. A. Schmidt, L. N. Prill Sempere, H. K. Tyagi, C. G. Poulton, and P. S. J. Russell, “Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires,” Phys. Rev. B 77(3), 033417 (2008).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016623 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials,” Phys. Rev. Lett. 103(15), 153901 (2009).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A (1)

R. C. McPhedran, C. G. Poulton, N. A. Nicorovici, and A. B. Movchan, “Low frequency corrections to the static effective dielectric constant of a two-dimensional composite material,” Proc. R. Soc. Lond. A 452(1953), 2231–2245 (1996).
[CrossRef]

Radioengineering (1)

C. Yang, J. Yang, M. Huang, J. Shi, and J. Peng, “Electromagnetic cylindrical transparent devices with irregular cross section,” Radioengineering 19, 136–140 (2010).

Science (3)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328(5976), 337–339 (2010).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Vacuum (1)

J. Ward, “Towards invisible glass,” Vacuum 22(9), 369–375 (1972).
[CrossRef]

Other (4)

Y. Ruan, H. Ebendorff-Heidepriem, and T. M. Monro, “Subwavelength soft glass fibres with extremely small hole size for field enhancement,” in Proceedings of the Australasian Conference on Optics, Lasers and Spectroscopy and Australian Conference on Optical Fibre Technology (Adelaide, Australia, 2009).

A. Tuniz, P. Chen, B. T. Kuhlmey, and S. C. Fleming, “Design of an optical hyperlens with metallic nanocylinders,” in Proceedings of META '10, 2nd International Conference on Metamaterials, Photonc Crystals and Plasmonics (Cairo, Egypt, 2010).

P. Markos, and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, 2008), Chap. 14.

E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Radar cross section (New York: SciTech Publishing, 2004), Chapter 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a metal-dielectric preform, drawn into a metamaterial via heating, designed to be invisible at a chosen optical wavelength (e.g. 633nm).

Fig. 2
Fig. 2

(a) Real and (b) imaginary parts of the permittivity of silver at optical wavelengths: the blue solid line represents the polynomial fit used in the numerical model, the red markers indicate experimental values.

Fig. 3
Fig. 3

(a) Real and (b) imaginary parts of effective refractive index and impedance as a function of filling fraction f for hexagonally arranged silver cylinders in a silica background at a wavelength of λ = 633nm, retrieved for d = 10nm and d = 100nm, and calculated through Eq. (3). Note that effective medium theory [Eq. (3)] applies only for smaller unit cells. (c) Real parts of retrieved effective optical parameters as a function of wavelength for d = 10nm, f = 0.0567 and (d) for d = 100nm, f = 0.0659. In both cases Re(n) = 1 at 633nm by design, but for the larger unit cell size a magnetic response is present.

Fig. 4
Fig. 4

(a) Schematic of incident wave parameters with respect to the axis of a dielectric cylinder with radius R, filled with hexagonally arranged metal nanocylinders of radius r and centre-to-centre pitch d. φ indicates azimuthal dependence, θ indicates the incident angle of the wave vector k with respect to the cylinder axis and δ indicates the angle of polarisation. (b) Normalised scattering cross section for different cylinders with R = 1μm. The designed metamaterial cylinder has a minimum cross section at the chosen wavelength of 633nm. Inset: Normalised scattering cross section (full calculation) for the metamaterial cylinder as a function of azimuthal angle.

Fig. 5
Fig. 5

Electric field (out of plane) at λ = 633nm incident on a R = 1μm (a) silver, (b) silica and (c) metamaterial cylinder. (d) Magnitude of scattered electric field for 1μm metamaterial cylinders at λ = 593nm, where only the impedance is unity, and (e) at λ = 633nm, where only the refractive index is unity.

Fig. 6
Fig. 6

(a) Colour density plot of normalised SCS as a function of incident angle θ for TE polarisation (δ = 90°), and (b) as a function of polarisation angle δ for normal incidence (θ = 90°).

Fig. 7
Fig. 7

(a) Analytically computed σT at λ = 633nm as a function of cylinder radius, for silver, silica, and our metamaterial cylinder using retrieved parameters. (b) Comparison with full multipole calculation for R ≤ 3μm. Inset: electric field (out of plane) for R = 470nm and R = 480nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

t = 1 cos n ω L c i 2 ( z + 1 z ) sin n ω L c ,
r t = i 2 ( z 1 z ) sin n ω L c ,
ε eff = f ε m + ( 1 f ) ε d ,
f = 1 ε d ε m ε d .
cos n ω L c = 1 2 t [ 1 r 2 + t 2 ] ,
z = ± ( 1 + r ) 2 t 2 ( 1 r ) 2 t 2
σ ( α ) = lim ρ + 2 π ρ | E S ( ρ , α ) | 2 | E 0 ( ρ , α ) | 2 ,
σ T = 1 2 π 0 2 π σ ( α ) d α

Metrics