Abstract

Temporal focusing of spatially chirped femtosecond laser pulses overcomes previous limitations for ablating high aspect ratio features with low numerical aperture (NA) beams. Simultaneous spatial and temporal focusing reduces nonlinear interactions, such as self-focusing, prior to the focal plane so that deep (~1 mm) features with parallel sidewalls are ablated at high material removal rates (25 µm3 per 80 µJ pulse) at 0.04-0.05 NA. This technique is applied to the fabrication of microfluidic devices by ablation through the back surface of thick (6 mm) fused silica substrates. It is also used to ablate bone under aqueous immersion to produce craniotomies.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
    [CrossRef] [PubMed]
  2. M. K. Bhuyan, F. Courvoisier, P.-A. Lacourt, M. Jacquot, L. Furfaro, M. J. Withford, and J. M. Dudley, “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams,” Opt. Express 18(2), 566–574 (2010).
    [CrossRef] [PubMed]
  3. D. Schafer, E. A. Gibson, E. A. Salim, A. E. Palmer, R. Jimenez, and J. Squier, “Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding,” Opt. Express 17(8), 6068–6073 (2009).
    [CrossRef] [PubMed]
  4. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26(23), 1912–1914 (2001).
    [CrossRef]
  5. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
    [CrossRef]
  6. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [CrossRef] [PubMed]
  7. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13(6), 2153–2159 (2005).
    [CrossRef] [PubMed]
  8. D. Vitek, D. Adams, A. Johnson, D. Kleinfeld, S. Backus, C. Durfee, and J. Squier, “Spatially chirped pulses for high aspect ratio micromachining by femtosecond laser ablation,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA T echnical Digest Series (CD) (Optical Society of America, 2010), paper CMBB5.
  9. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35(7), 1106–1108 (2010).
    [CrossRef] [PubMed]
  10. G. Veshapidze, M. L. Trachy, M. H. Shah, and B. D. DePaola, “Reducing the uncertainty in laser beam size measurement with a scanning edge method,” Appl. Opt. 45(32), 8197–8199 (2006).
    [CrossRef] [PubMed]
  11. J.-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24(9), 1270–1282 (1985).
    [CrossRef] [PubMed]
  12. M. A. Coughlan, M. Plewicki, and R. J. Levis, “Parametric spatio-temporal control of focusing laser pulses,” Opt. Express 17(18), 15808–15820 (2009).
    [CrossRef] [PubMed]
  13. J. F. Edd, D. D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8(8), 1262–1264 (2008).
    [CrossRef] [PubMed]
  14. D. E. Hertzog, X. Michalet, M. Jäger, X. Kong, J. G. Santiago, S. Weiss, and O. Bakajin, “Femtomole mixer for microsecond kinetic studies of protein folding,” Anal. Chem. 76(24), 7169–7178 (2004).
    [CrossRef] [PubMed]
  15. M. Castaño-Álvarez, D. F. Pozo Ayuso, M. García Granda, M. T. Fernández-Abedul, J. Rodríguez García, and A. Costa-García, “Critical points in the fabrication of microfluidic devices on glass substrates,” Sens. Actuators B Chem. 130(1), 436–448 (2008).
    [CrossRef]
  16. P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
    [CrossRef] [PubMed]
  17. J. Neev, W. A. Carrasco, W. B. Armstrong, L. B. Da Silva, M. D. Feit, D. L. Matthews, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Applications of ultrashort pulse lasers for hard tissue surgery,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
    [CrossRef]
  18. P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
    [CrossRef] [PubMed]

2010

2009

2008

J. F. Edd, D. D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8(8), 1262–1264 (2008).
[CrossRef] [PubMed]

M. Castaño-Álvarez, D. F. Pozo Ayuso, M. García Granda, M. T. Fernández-Abedul, J. Rodríguez García, and A. Costa-García, “Critical points in the fabrication of microfluidic devices on glass substrates,” Sens. Actuators B Chem. 130(1), 436–448 (2008).
[CrossRef]

2006

2005

2004

D. E. Hertzog, X. Michalet, M. Jäger, X. Kong, J. G. Santiago, S. Weiss, and O. Bakajin, “Femtomole mixer for microsecond kinetic studies of protein folding,” Anal. Chem. 76(24), 7169–7178 (2004).
[CrossRef] [PubMed]

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[CrossRef]

2003

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[CrossRef] [PubMed]

2001

1996

J. Neev, W. A. Carrasco, W. B. Armstrong, L. B. Da Silva, M. D. Feit, D. L. Matthews, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Applications of ultrashort pulse lasers for hard tissue surgery,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

1985

Armstrong, W. B.

J. Neev, W. A. Carrasco, W. B. Armstrong, L. B. Da Silva, M. D. Feit, D. L. Matthews, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Applications of ultrashort pulse lasers for hard tissue surgery,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Bakajin, O.

D. E. Hertzog, X. Michalet, M. Jäger, X. Kong, J. G. Santiago, S. Weiss, and O. Bakajin, “Femtomole mixer for microsecond kinetic studies of protein folding,” Anal. Chem. 76(24), 7169–7178 (2004).
[CrossRef] [PubMed]

Bhuyan, M. K.

Blinder, P.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[CrossRef] [PubMed]

Carrasco, W. A.

J. Neev, W. A. Carrasco, W. B. Armstrong, L. B. Da Silva, M. D. Feit, D. L. Matthews, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Applications of ultrashort pulse lasers for hard tissue surgery,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Castaño-Álvarez, M.

M. Castaño-Álvarez, D. F. Pozo Ayuso, M. García Granda, M. T. Fernández-Abedul, J. Rodríguez García, and A. Costa-García, “Critical points in the fabrication of microfluidic devices on glass substrates,” Sens. Actuators B Chem. 130(1), 436–448 (2008).
[CrossRef]

Cheng, Y.

Choi, T. Y.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[CrossRef]

Costa-García, A.

M. Castaño-Álvarez, D. F. Pozo Ayuso, M. García Granda, M. T. Fernández-Abedul, J. Rodríguez García, and A. Costa-García, “Critical points in the fabrication of microfluidic devices on glass substrates,” Sens. Actuators B Chem. 130(1), 436–448 (2008).
[CrossRef]

Coughlan, M. A.

Courvoisier, F.

Da Silva, L. B.

J. Neev, W. A. Carrasco, W. B. Armstrong, L. B. Da Silva, M. D. Feit, D. L. Matthews, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Applications of ultrashort pulse lasers for hard tissue surgery,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

DePaola, B. D.

Di Carlo, D. D.

J. F. Edd, D. D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8(8), 1262–1264 (2008).
[CrossRef] [PubMed]

Diels, J.-C. M.

Dudley, J. M.

Durst, M.

Edd, J. F.

J. F. Edd, D. D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8(8), 1262–1264 (2008).
[CrossRef] [PubMed]

Feit, M. D.

J. Neev, W. A. Carrasco, W. B. Armstrong, L. B. Da Silva, M. D. Feit, D. L. Matthews, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Applications of ultrashort pulse lasers for hard tissue surgery,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Fernández-Abedul, M. T.

M. Castaño-Álvarez, D. F. Pozo Ayuso, M. García Granda, M. T. Fernández-Abedul, J. Rodríguez García, and A. Costa-García, “Critical points in the fabrication of microfluidic devices on glass substrates,” Sens. Actuators B Chem. 130(1), 436–448 (2008).
[CrossRef]

Fontaine, J. J.

Friedman, B.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[CrossRef] [PubMed]

Furfaro, L.

García Granda, M.

M. Castaño-Álvarez, D. F. Pozo Ayuso, M. García Granda, M. T. Fernández-Abedul, J. Rodríguez García, and A. Costa-García, “Critical points in the fabrication of microfluidic devices on glass substrates,” Sens. Actuators B Chem. 130(1), 436–448 (2008).
[CrossRef]

Gibson, E. A.

Grigoropoulos, C. P.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[CrossRef]

He, F.

Hertzog, D. E.

D. E. Hertzog, X. Michalet, M. Jäger, X. Kong, J. G. Santiago, S. Weiss, and O. Bakajin, “Femtomole mixer for microsecond kinetic studies of protein folding,” Anal. Chem. 76(24), 7169–7178 (2004).
[CrossRef] [PubMed]

Humphry, K. J.

J. F. Edd, D. D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8(8), 1262–1264 (2008).
[CrossRef] [PubMed]

Hunt, A. J.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Hwang, D. J.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[CrossRef]

Ifarraguerri, A. I.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[CrossRef] [PubMed]

Irimia, D.

J. F. Edd, D. D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8(8), 1262–1264 (2008).
[CrossRef] [PubMed]

Itoh, K.

Jacquot, M.

Jäger, M.

D. E. Hertzog, X. Michalet, M. Jäger, X. Kong, J. G. Santiago, S. Weiss, and O. Bakajin, “Femtomole mixer for microsecond kinetic studies of protein folding,” Anal. Chem. 76(24), 7169–7178 (2004).
[CrossRef] [PubMed]

Jiang, Y. Y.

Jimenez, R.

Jin, Y.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[CrossRef] [PubMed]

Joglekar, A. P.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Kleinfeld, D.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[CrossRef] [PubMed]

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[CrossRef] [PubMed]

Kong, X.

D. E. Hertzog, X. Michalet, M. Jäger, X. Kong, J. G. Santiago, S. Weiss, and O. Bakajin, “Femtomole mixer for microsecond kinetic studies of protein folding,” Anal. Chem. 76(24), 7169–7178 (2004).
[CrossRef] [PubMed]

Köster, S.

J. F. Edd, D. D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8(8), 1262–1264 (2008).
[CrossRef] [PubMed]

Kuroda, D.

Lacourt, P.-A.

Levis, R. J.

Lev-Ram, V.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[CrossRef] [PubMed]

Li, Y.

Liu, H. H.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Matthews, D. L.

J. Neev, W. A. Carrasco, W. B. Armstrong, L. B. Da Silva, M. D. Feit, D. L. Matthews, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Applications of ultrashort pulse lasers for hard tissue surgery,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

McMichael, I. C.

Meyhöfer, E.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Michalet, X.

D. E. Hertzog, X. Michalet, M. Jäger, X. Kong, J. G. Santiago, S. Weiss, and O. Bakajin, “Femtomole mixer for microsecond kinetic studies of protein folding,” Anal. Chem. 76(24), 7169–7178 (2004).
[CrossRef] [PubMed]

Midorikawa, K.

Migliori, B. J.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[CrossRef] [PubMed]

Mourou, G.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Neev, J.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[CrossRef] [PubMed]

J. Neev, W. A. Carrasco, W. B. Armstrong, L. B. Da Silva, M. D. Feit, D. L. Matthews, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Applications of ultrashort pulse lasers for hard tissue surgery,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Ni, J.

Nishii, J.

Oron, D.

Palmer, A. E.

Perry, M. D.

J. Neev, W. A. Carrasco, W. B. Armstrong, L. B. Da Silva, M. D. Feit, D. L. Matthews, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Applications of ultrashort pulse lasers for hard tissue surgery,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Plewicki, M.

Pozo Ayuso, D. F.

M. Castaño-Álvarez, D. F. Pozo Ayuso, M. García Granda, M. T. Fernández-Abedul, J. Rodríguez García, and A. Costa-García, “Critical points in the fabrication of microfluidic devices on glass substrates,” Sens. Actuators B Chem. 130(1), 436–448 (2008).
[CrossRef]

Rodríguez García, J.

M. Castaño-Álvarez, D. F. Pozo Ayuso, M. García Granda, M. T. Fernández-Abedul, J. Rodríguez García, and A. Costa-García, “Critical points in the fabrication of microfluidic devices on glass substrates,” Sens. Actuators B Chem. 130(1), 436–448 (2008).
[CrossRef]

Rubenchik, A. M.

J. Neev, W. A. Carrasco, W. B. Armstrong, L. B. Da Silva, M. D. Feit, D. L. Matthews, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Applications of ultrashort pulse lasers for hard tissue surgery,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Salim, E. A.

Santiago, J. G.

D. E. Hertzog, X. Michalet, M. Jäger, X. Kong, J. G. Santiago, S. Weiss, and O. Bakajin, “Femtomole mixer for microsecond kinetic studies of protein folding,” Anal. Chem. 76(24), 7169–7178 (2004).
[CrossRef] [PubMed]

Schafer, D.

Schaffer, C. B.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[CrossRef] [PubMed]

Shah, M. H.

Silberberg, Y.

Simoni, F.

Squier, J.

Squier, J. A.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[CrossRef] [PubMed]

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[CrossRef] [PubMed]

Stuart, B. C.

J. Neev, W. A. Carrasco, W. B. Armstrong, L. B. Da Silva, M. D. Feit, D. L. Matthews, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Applications of ultrashort pulse lasers for hard tissue surgery,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Sugioka, K.

Tal, E.

Thompson, B. D.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[CrossRef] [PubMed]

Toner, M.

J. F. Edd, D. D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8(8), 1262–1264 (2008).
[CrossRef] [PubMed]

Trachy, M. L.

Tsai, P. S.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[CrossRef] [PubMed]

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[CrossRef] [PubMed]

Tsien, R. Y.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[CrossRef] [PubMed]

van Howe, J.

Veshapidze, G.

Watanabe, W.

Weiss, S.

D. E. Hertzog, X. Michalet, M. Jäger, X. Kong, J. G. Santiago, S. Weiss, and O. Bakajin, “Femtomole mixer for microsecond kinetic studies of protein folding,” Anal. Chem. 76(24), 7169–7178 (2004).
[CrossRef] [PubMed]

Weitz, D. A.

J. F. Edd, D. D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8(8), 1262–1264 (2008).
[CrossRef] [PubMed]

Withford, M. J.

Xiong, H.

Xiong, Q.

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[CrossRef] [PubMed]

Xu, C.

Xu, H.

Xu, Z.

Yamada, K.

Zhu, G.

Zipfel, W.

Anal. Chem.

D. E. Hertzog, X. Michalet, M. Jäger, X. Kong, J. G. Santiago, S. Weiss, and O. Bakajin, “Femtomole mixer for microsecond kinetic studies of protein folding,” Anal. Chem. 76(24), 7169–7178 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys., A Mater. Sci. Process.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[CrossRef]

Curr. Opin. Biotechnol.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol. 20(1), 90–99 (2009).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

J. Neev, W. A. Carrasco, W. B. Armstrong, L. B. Da Silva, M. D. Feit, D. L. Matthews, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, “Applications of ultrashort pulse lasers for hard tissue surgery,” IEEE J. Sel. Top. Quantum Electron. 2, 790–800 (1996).
[CrossRef]

Lab Chip

J. F. Edd, D. D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops,” Lab Chip 8(8), 1262–1264 (2008).
[CrossRef] [PubMed]

Neuron

P. S. Tsai, B. Friedman, A. I. Ifarraguerri, B. D. Thompson, V. Lev-Ram, C. B. Schaffer, Q. Xiong, R. Y. Tsien, J. A. Squier, and D. Kleinfeld, “All-optical histology using ultrashort laser pulses,” Neuron 39(1), 27–41 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

M. Castaño-Álvarez, D. F. Pozo Ayuso, M. García Granda, M. T. Fernández-Abedul, J. Rodríguez García, and A. Costa-García, “Critical points in the fabrication of microfluidic devices on glass substrates,” Sens. Actuators B Chem. 130(1), 436–448 (2008).
[CrossRef]

Other

D. Vitek, D. Adams, A. Johnson, D. Kleinfeld, S. Backus, C. Durfee, and J. Squier, “Spatially chirped pulses for high aspect ratio micromachining by femtosecond laser ablation,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA T echnical Digest Series (CD) (Optical Society of America, 2010), paper CMBB5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Basic utility of temporal focusing for micromachining. (a) An illustration of the focusing geometry. 800 nm, 60 fs, 50 µJ pulses are focused at 0.05 NA at the back surface of a 6 mm thick block of fused silica. (b) Without spatially chirped pulses, self-focusing and supercontinuum generation result in a loss of intensity at the focus. The glass is tracked along the length of the filament and selective ablation at the focal depth is inhibited. (c) With spatially chirped pulses, self-focusing and continuum generation are suppressed, and the backside of the glass sample is ablated as evidenced by the plasma emission.

Fig. 2
Fig. 2

Scheme for temporal focusing of chirped pulses. The temporally chirped pulses are spatially chirped then collimated by two gratings. After the second grating, the intensities, I, of all frequencies overlap in time, t, but the frequencies do not overlap spatially except at the focal plane.

Fig. 3
Fig. 3

The sample is mounted in a transparent glass chamber. The chamber is filled with water and partially immersed in an ultrasonic bath.

Fig. 4
Fig. 4

Geometric optics model. (a) The beam was ray-traced through the focus of a 25 mm focal length, 90 degree off-axis parabola. The center wavelength and the FWHM edges of the spectrum were represented by green, blue and red rays, respectively. (b) The shape of the beam spot in x (chirped dimension) and y (unchirped dimension) was simulated at several axial positions through focus. At focus (z = 0) the beam spot was symmetric. (c) An image of the focal plasma in air. (d) The shape of the beam spot was asymmetric at focus with the addition of 6 mm of fused silica to simulate backside machining.

Fig. 5
Fig. 5

Spatio-temporal beam propagation. Beam propagation was simulated in the spatially chirped dimension, x, generated by Fourier pulse propagation using the non-paraxial propagator. We begin from (a) the lens at z = 0 and proceed in (b)-(e) to the focal plane at z = f. Note that the spatial scale has changed between (c) and (d) by a factor of 10. Above each spatio-temporal plot is a lineout at x = 0 with a corresponding temporal axis.

Fig. 6
Fig. 6

The depth of focus (DOF) and the B-integral as a function of the beam aspect ratio. All quantities are scaled by the value for an unchirped beam (BAR = 1).

Fig. 7
Fig. 7

Confocal images of 200 µm long segments of microfluidic channels cut on (a) the backside with temporal focusing at 0.04 NA and on (b) the front side without temporal focusing at 0.07 NA. (c,d) Side-view white light and fluorescence images of a microfluidic channel cut on the backside with temporal focusing. (e) A hole was ablated into the back surface and imaged from two angles: the spatially chirped dimension (left) and the unchirped dimension (right). (c-e) Scale bar, 200 µm. (f) An illustration comparing channel cross sections for chemical etching with our measurements for front surface laser ablation and for back surface laser ablation.

Fig. 8
Fig. 8

(a) Craniotomy in an excised mouse skull performed using femtosecond laser ablation with spatially chirped pulses (on left). For comparison, we show a traditional craniotomy performed with a hand-held dental drill (on right). The 1 mm wide × 2 mm long × 0.3 mm deep craniotomy was produced with less than 20 minutes of laser ablation. (b) Top and (c) tilted-right enlarged views of the femtosecond laser craniotomy.

Metrics