Abstract

We investigate a high capacity WDM-PON based on wavelength-locked Fabry-Perot laser diodes. A color-free transmission of 2.5 Gb/s per channel is achieved with a polarization independent F-P LD and a decision threshold control circuit at the receiver. Then, we demonstrate an 80 Gb/s capacity (2.5 Gb/s × 32 channels) WDM-PON with transmission length of 20 km. We also investigate impairments in transmission.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the Home using a PON Infrastructure,” J. Lightwave Technol. 24(12), 4568–4583 (2006).
    [CrossRef]
  2. C.-H. Lee, S.-M. Lee, K.-M. Choi, J.-H. Moon, S.-G. Mun, K.-T. Jeong, J. H. Kim, and B. Kim, “WDM-PON experiences in Korea [Invited],” J. Opt. Netw. 6(5), 451–464 (2007).
    [CrossRef]
  3. S.-G. Mun, J.-H. Moon, H.-K. Lee, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with a 40 Gb/s (32 x 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Opt. Express 16(15), 11361–11368 (2008).
    [CrossRef] [PubMed]
  4. J. S. Jeong, and C.-H. Lee, “Optical Noise Suppression Techniques for Wavelength-Locked Fabry-Perot Laser Diode,” in Proceedings of the 15th Asia-Pacific Conference on Communications (Shanghai, China, 2009), Paper 142.
  5. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise Suppression of Incoherent Light Using a Gain-Saturated SOA: Implications for Spectrum-Sliced WDM Systems,” J. Lightwave Technol. 23(8), 2399–2409 (2005).
    [CrossRef]
  6. A. Shen, D. Make, F. Poingt, L. Legouezigou, F. Pommereau, O. Legouezigou, J. Landreau, B. Rousseau, F. Lelarge, and G.-H. Daun, “Polarisation insensitive injection locked Fabry-Perot laser diodes for 2.5Gb/s WDM access applications,” in Proceedings of the European Conference and Exhibition on Optical Communication (Brussels, Belgium, 2008), Paper Th.3.D.1.
  7. H.-S. Kim, B.-S. Choi, K.-S. Kim, D. C. Kim, O.-K. Kwon, and D.-K. Oh, “Multisection RSOA for 2.5 Gbps Colorless WDM-PON,” in Proceedings of the European Conference and Exhibition on Optical Communication (Vienna, Austria, 2009), Paper P2.17.
  8. J.-H. Moon, K.-M. Choi, S.-G. Mun, and C.-H. Lee, “Effects of Back-Reflection in WDM-PONs Based on Seed Light Injection,” IEEE Photon. Technol. Lett. 19(24), 2045–2047 (2007).
    [CrossRef]
  9. H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Commun. Netw. 2(6), 381–388 (2010).
    [CrossRef]
  10. J. C. Palais, Fiber Optic Communications, 5th ed. (Pearson Prentice-Hall, 2005), Chap. 11.
  11. W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
    [CrossRef]
  12. A. D. McCoy, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Filtering Effects in a Spectrum-Sliced WDM System Using SOA-based Noise Reduction,” IEEE Photon. Technol. Lett. 16(2), 680–682 (2004).
    [CrossRef]
  13. S.-H. Cho, H.-H. Lee, M.-Y. Park, J.-H. Lee, J.-H. Yu, and B. Kim, “Effects of RSOA Gain Ripples on Upstream Transmission in a SML-Seeded Loop-Back WDM-PON,” in Proceedings of the Optical Fiber Communication Conference (San Diego, CA, 2009), Paper JWA70.
  14. K.-Y. Park and C.-H. Lee, “Intensity Noise in a Wavelength-Locked Fabry-Perot Laser Diode to a Spectrum Sliced ASE,” IEEE J. Quantum Electron. 44(3), 209–215 (2008).
    [CrossRef]
  15. J.-Y. Kim, S.-G. Mun, J.-H. Moon, H.-K. Lee, and C.-H. Lee, “A High Capacity and Long Reach DWDM-PON Using Triple-Contact F-P LDs,” in Proceedings of the Optical Fiber Communication Conference (San Diego, CA, 2010), Paper JThA31.
  16. K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON Using Light-Emitting Diodes Spectrum-Sliced With Cyclic Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
    [CrossRef]

2010 (1)

2008 (2)

K.-Y. Park and C.-H. Lee, “Intensity Noise in a Wavelength-Locked Fabry-Perot Laser Diode to a Spectrum Sliced ASE,” IEEE J. Quantum Electron. 44(3), 209–215 (2008).
[CrossRef]

S.-G. Mun, J.-H. Moon, H.-K. Lee, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with a 40 Gb/s (32 x 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes,” Opt. Express 16(15), 11361–11368 (2008).
[CrossRef] [PubMed]

2007 (2)

C.-H. Lee, S.-M. Lee, K.-M. Choi, J.-H. Moon, S.-G. Mun, K.-T. Jeong, J. H. Kim, and B. Kim, “WDM-PON experiences in Korea [Invited],” J. Opt. Netw. 6(5), 451–464 (2007).
[CrossRef]

J.-H. Moon, K.-M. Choi, S.-G. Mun, and C.-H. Lee, “Effects of Back-Reflection in WDM-PONs Based on Seed Light Injection,” IEEE Photon. Technol. Lett. 19(24), 2045–2047 (2007).
[CrossRef]

2006 (1)

2005 (2)

A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise Suppression of Incoherent Light Using a Gain-Saturated SOA: Implications for Spectrum-Sliced WDM Systems,” J. Lightwave Technol. 23(8), 2399–2409 (2005).
[CrossRef]

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

2004 (2)

A. D. McCoy, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Filtering Effects in a Spectrum-Sliced WDM System Using SOA-based Noise Reduction,” IEEE Photon. Technol. Lett. 16(2), 680–682 (2004).
[CrossRef]

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON Using Light-Emitting Diodes Spectrum-Sliced With Cyclic Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Cho, S. H.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Choi, H. Y.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON Using Light-Emitting Diodes Spectrum-Sliced With Cyclic Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Choi, K.-M.

Chung, Y. C.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON Using Light-Emitting Diodes Spectrum-Sliced With Cyclic Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Han, K. H.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON Using Light-Emitting Diodes Spectrum-Sliced With Cyclic Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Horak, P.

Ibsen, M.

A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise Suppression of Incoherent Light Using a Gain-Saturated SOA: Implications for Spectrum-Sliced WDM Systems,” J. Lightwave Technol. 23(8), 2399–2409 (2005).
[CrossRef]

A. D. McCoy, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Filtering Effects in a Spectrum-Sliced WDM System Using SOA-based Noise Reduction,” IEEE Photon. Technol. Lett. 16(2), 680–682 (2004).
[CrossRef]

Jeong, G.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Jeong, K.-T.

Kim, B.

Kim, B. W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, B. Y.

Kim, C.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Kim, J. H.

Kim, J.-Y.

Lee, C.-H.

Lee, H.-K.

Lee, J.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Lee, S.-M.

Lee, W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Lim, K. W.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON Using Light-Emitting Diodes Spectrum-Sliced With Cyclic Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

McCoy, A. D.

A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise Suppression of Incoherent Light Using a Gain-Saturated SOA: Implications for Spectrum-Sliced WDM Systems,” J. Lightwave Technol. 23(8), 2399–2409 (2005).
[CrossRef]

A. D. McCoy, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Filtering Effects in a Spectrum-Sliced WDM System Using SOA-based Noise Reduction,” IEEE Photon. Technol. Lett. 16(2), 680–682 (2004).
[CrossRef]

Moon, J.-H.

Mun, S.-G.

Park, K.-Y.

K.-Y. Park and C.-H. Lee, “Intensity Noise in a Wavelength-Locked Fabry-Perot Laser Diode to a Spectrum Sliced ASE,” IEEE J. Quantum Electron. 44(3), 209–215 (2008).
[CrossRef]

Park, M. Y.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

Richardson, D. J.

A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise Suppression of Incoherent Light Using a Gain-Saturated SOA: Implications for Spectrum-Sliced WDM Systems,” J. Lightwave Technol. 23(8), 2399–2409 (2005).
[CrossRef]

A. D. McCoy, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Filtering Effects in a Spectrum-Sliced WDM System Using SOA-based Noise Reduction,” IEEE Photon. Technol. Lett. 16(2), 680–682 (2004).
[CrossRef]

Son, E. S.

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON Using Light-Emitting Diodes Spectrum-Sliced With Cyclic Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

Sorin, W. V.

Thomsen, B. C.

A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise Suppression of Incoherent Light Using a Gain-Saturated SOA: Implications for Spectrum-Sliced WDM Systems,” J. Lightwave Technol. 23(8), 2399–2409 (2005).
[CrossRef]

A. D. McCoy, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Filtering Effects in a Spectrum-Sliced WDM System Using SOA-based Noise Reduction,” IEEE Photon. Technol. Lett. 16(2), 680–682 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

K.-Y. Park and C.-H. Lee, “Intensity Noise in a Wavelength-Locked Fabry-Perot Laser Diode to a Spectrum Sliced ASE,” IEEE J. Quantum Electron. 44(3), 209–215 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON Based on Gain-Saturated Reflective Semiconductor Optical Amplifiers,” IEEE Photon. Technol. Lett. 17(11), 2460–2462 (2005).
[CrossRef]

A. D. McCoy, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Filtering Effects in a Spectrum-Sliced WDM System Using SOA-based Noise Reduction,” IEEE Photon. Technol. Lett. 16(2), 680–682 (2004).
[CrossRef]

J.-H. Moon, K.-M. Choi, S.-G. Mun, and C.-H. Lee, “Effects of Back-Reflection in WDM-PONs Based on Seed Light Injection,” IEEE Photon. Technol. Lett. 19(24), 2045–2047 (2007).
[CrossRef]

K. H. Han, E. S. Son, H. Y. Choi, K. W. Lim, and Y. C. Chung, “Bidirectional WDM PON Using Light-Emitting Diodes Spectrum-Sliced With Cyclic Arrayed-Waveguide Grating,” IEEE Photon. Technol. Lett. 16(10), 2380–2382 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Opt. Express (1)

Other (6)

J. C. Palais, Fiber Optic Communications, 5th ed. (Pearson Prentice-Hall, 2005), Chap. 11.

J. S. Jeong, and C.-H. Lee, “Optical Noise Suppression Techniques for Wavelength-Locked Fabry-Perot Laser Diode,” in Proceedings of the 15th Asia-Pacific Conference on Communications (Shanghai, China, 2009), Paper 142.

A. Shen, D. Make, F. Poingt, L. Legouezigou, F. Pommereau, O. Legouezigou, J. Landreau, B. Rousseau, F. Lelarge, and G.-H. Daun, “Polarisation insensitive injection locked Fabry-Perot laser diodes for 2.5Gb/s WDM access applications,” in Proceedings of the European Conference and Exhibition on Optical Communication (Brussels, Belgium, 2008), Paper Th.3.D.1.

H.-S. Kim, B.-S. Choi, K.-S. Kim, D. C. Kim, O.-K. Kwon, and D.-K. Oh, “Multisection RSOA for 2.5 Gbps Colorless WDM-PON,” in Proceedings of the European Conference and Exhibition on Optical Communication (Vienna, Austria, 2009), Paper P2.17.

S.-H. Cho, H.-H. Lee, M.-Y. Park, J.-H. Lee, J.-H. Yu, and B. Kim, “Effects of RSOA Gain Ripples on Upstream Transmission in a SML-Seeded Loop-Back WDM-PON,” in Proceedings of the Optical Fiber Communication Conference (San Diego, CA, 2009), Paper JWA70.

J.-Y. Kim, S.-G. Mun, J.-H. Moon, H.-K. Lee, and C.-H. Lee, “A High Capacity and Long Reach DWDM-PON Using Triple-Contact F-P LDs,” in Proceedings of the Optical Fiber Communication Conference (San Diego, CA, 2010), Paper JThA31.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for 2.5 Gb/s transmission.

Fig. 2
Fig. 2

Comparison of the noise reduction effects according to ASE injection power

Fig. 3
Fig. 3

Characteristics of PI F-P LD (a) L-I curve (b) PDG according to ASE injection power (c) measured spectra with ASE injection

Fig. 4
Fig. 4

Measured spectra according to (a) the bias current of the F-P LD (b) the ambient temperature of the F-P LD (c) the bias current of the RSOA (d) the ambient temperature of the RSOA

Fig. 5
Fig. 5

Experimental results of PD F-P LD (a) measured BER curves (b) measured RIN

Fig. 6
Fig. 6

Experimental results of PI F-P LD (a) measured BER curves (b) measured RIN

Fig. 7
Fig. 7

Experimental results of PI RSOA (a) measured BER curves (b) measured RIN

Fig. 8
Fig. 8

Transmission results (a) measured BER curves and (b) calculated dispersion power penalty

Fig. 9
Fig. 9

(a) Spectrum of free-running PI F-P LD (b) Measured locked spectra (c) Measured BER curves after 20 km transmission of ch1~ch32 (d) Measured locked power of 32 channels at ONT.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ R I N 2 = R 2 P 2 10 x 10 B e
Δ P d i s p e r s i o n = 10 log ( 1 5.1595 B 2 L 2 [ 0.18 Δ v 2 D 2 ] )

Metrics