Abstract

Abstract: We demonstrate cooling of a 2 micron thick GaAs/InGaP double-heterostructure to 165 K from ambient using an all-solid-state optical refrigerator. Cooler is comprised of Yb3+-doped YLF crystal, utilizing 3.5 Watts of absorbed power near the E4-E5 Stark manifold transition.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, “Zwei bemerkungen uËber den unterschied von lumineszenz- und Temperaturstrahlung,” Z. Phys. 57(11-12), 739–746 (1929).
    [CrossRef]
  2. M. Sheik-Bahae and R. I. Epstein, “Optical Refrigeration: Advancing toward an all-solid-state cryocooler,” Nat. Photonics 1(12), 693–699 (2007).
    [CrossRef]
  3. M. Sheik-Bahae and R. I. Epstein, “Laser Cooling of Solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
    [CrossRef]
  4. R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
    [CrossRef]
  5. A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17(5), 471–479 (1996).
    [CrossRef]
  6. L. A. Rivlin and A. A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139(4-6), 219–222 (1997).
    [CrossRef]
  7. M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92(24), 247403 (2004).
    [CrossRef] [PubMed]
  8. G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006).
    [CrossRef] [PubMed]
  9. J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys. 100(11), 113116 (2006).
    [CrossRef]
  10. E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
    [CrossRef]
  11. H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
    [CrossRef]
  12. M. Sheik-Bahae, B. Imangholi, M. P. Hasselbeck, R. I. Epstein, and S. Kurtz, “Advances in Laser Cooling of Semiconductors,” Proc. SPIE 6115, 611518 (2006).
    [CrossRef]
  13. C. Wang, M. P. Hasselbeck, C.-Y. Li, and M. Sheik-Bahae, “Characterization of external quantum efficiency and absorption efficiency in GaAs/ InGaP double heterostructures for laser cooling applications,” Proc. SPIE 7614, 76140B (2010).
    [CrossRef]
  14. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
    [CrossRef]
  15. M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
    [CrossRef]
  16. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
    [CrossRef] [PubMed]
  17. D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
    [CrossRef]
  18. D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010).
    [CrossRef]
  19. B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a Solid-State Optical Cooler: An Approach to Cryogenic Refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
    [CrossRef]
  20. J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
    [CrossRef]
  21. B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
    [CrossRef]
  22. Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [CrossRef]
  23. G. L. Mills and A. J. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2-3), 176–182 (2006).
    [CrossRef]
  24. C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
    [CrossRef]
  25. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [CrossRef]

2010

C. Wang, M. P. Hasselbeck, C.-Y. Li, and M. Sheik-Bahae, “Characterization of external quantum efficiency and absorption efficiency in GaAs/ InGaP double heterostructures for laser cooling applications,” Proc. SPIE 7614, 76140B (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010).
[CrossRef]

2009

M. Sheik-Bahae and R. I. Epstein, “Laser Cooling of Solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
[CrossRef]

2008

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[CrossRef] [PubMed]

2007

M. Sheik-Bahae and R. I. Epstein, “Optical Refrigeration: Advancing toward an all-solid-state cryocooler,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

2006

M. Sheik-Bahae, B. Imangholi, M. P. Hasselbeck, R. I. Epstein, and S. Kurtz, “Advances in Laser Cooling of Semiconductors,” Proc. SPIE 6115, 611518 (2006).
[CrossRef]

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006).
[CrossRef] [PubMed]

J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys. 100(11), 113116 (2006).
[CrossRef]

G. L. Mills and A. J. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2-3), 176–182 (2006).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

2005

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

2004

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92(24), 247403 (2004).
[CrossRef] [PubMed]

2003

1999

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a Solid-State Optical Cooler: An Approach to Cryogenic Refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[CrossRef]

1997

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

L. A. Rivlin and A. A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139(4-6), 219–222 (1997).
[CrossRef]

1996

A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17(5), 471–479 (1996).
[CrossRef]

1995

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

1967

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[CrossRef]

1929

P. Pringsheim, “Zwei bemerkungen uËber den unterschied von lumineszenz- und Temperaturstrahlung,” Z. Phys. 57(11-12), 739–746 (1929).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Anderson, J. E.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a Solid-State Optical Cooler: An Approach to Cryogenic Refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

Bender, D. A.

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Bertness, K. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

Binder, R.

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006).
[CrossRef] [PubMed]

Bonelli, L.

Buchwald, M.

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Coluccelli, N.

Cornell, E. A.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

Di Lieto, A.

Distel, J.

Edwards, B.

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Edwards, B. C.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a Solid-State Optical Cooler: An Approach to Cryogenic Refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

Epstein, R. I.

M. Sheik-Bahae and R. I. Epstein, “Laser Cooling of Solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical Refrigeration: Advancing toward an all-solid-state cryocooler,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

M. Sheik-Bahae, B. Imangholi, M. P. Hasselbeck, R. I. Epstein, and S. Kurtz, “Advances in Laser Cooling of Semiconductors,” Proc. SPIE 6115, 611518 (2006).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92(24), 247403 (2004).
[CrossRef] [PubMed]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
[CrossRef]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a Solid-State Optical Cooler: An Approach to Cryogenic Refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Finkeißen, E.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[CrossRef]

Galzerano, G.

Gauck, H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

Gfroerer, T. H.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

Gosnell, T.

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Greenfield, S.

Greenfield, S. R.

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

Hasselbeck, M. P.

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010).
[CrossRef]

C. Wang, M. P. Hasselbeck, C.-Y. Li, and M. Sheik-Bahae, “Characterization of external quantum efficiency and absorption efficiency in GaAs/ InGaP double heterostructures for laser cooling applications,” Proc. SPIE 7614, 76140B (2010).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

M. Sheik-Bahae, B. Imangholi, M. P. Hasselbeck, R. I. Epstein, and S. Kurtz, “Advances in Laser Cooling of Semiconductors,” Proc. SPIE 6115, 611518 (2006).
[CrossRef]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
[CrossRef]

Hehlen, M. P.

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

Hoyt, C. W.

Imangholi, B.

M. Sheik-Bahae, B. Imangholi, M. P. Hasselbeck, R. I. Epstein, and S. Kurtz, “Advances in Laser Cooling of Semiconductors,” Proc. SPIE 6115, 611518 (2006).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Inoue, H.

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys. 100(11), 113116 (2006).
[CrossRef]

Kurtz, S.

M. Sheik-Bahae, B. Imangholi, M. P. Hasselbeck, R. I. Epstein, and S. Kurtz, “Advances in Laser Cooling of Semiconductors,” Proc. SPIE 6115, 611518 (2006).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Kwong, N. H.

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006).
[CrossRef] [PubMed]

Laporta, P.

Li, C.-Y.

C. Wang, M. P. Hasselbeck, C.-Y. Li, and M. Sheik-Bahae, “Characterization of external quantum efficiency and absorption efficiency in GaAs/ InGaP double heterostructures for laser cooling applications,” Proc. SPIE 7614, 76140B (2010).
[CrossRef]

Lieto, A. D.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

Melgaard, S. D.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

Mills, G. L.

G. L. Mills and A. J. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2-3), 176–182 (2006).
[CrossRef]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a Solid-State Optical Cooler: An Approach to Cryogenic Refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

Mord, A. J.

G. L. Mills and A. J. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2-3), 176–182 (2006).
[CrossRef]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a Solid-State Optical Cooler: An Approach to Cryogenic Refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

Mungan, C.

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Oraevsky, A. N.

A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17(5), 471–479 (1996).
[CrossRef]

Potemski, M.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[CrossRef]

Pringsheim, P.

P. Pringsheim, “Zwei bemerkungen uËber den unterschied von lumineszenz- und Temperaturstrahlung,” Z. Phys. 57(11-12), 739–746 (1929).
[CrossRef]

Renn, M. J.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Rivlin, L. A.

L. A. Rivlin and A. A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139(4-6), 219–222 (1997).
[CrossRef]

Rupper, G.

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006).
[CrossRef] [PubMed]

Seletskiy, D. V.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

Sheik-Bahae, M.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010).
[CrossRef]

C. Wang, M. P. Hasselbeck, C.-Y. Li, and M. Sheik-Bahae, “Characterization of external quantum efficiency and absorption efficiency in GaAs/ InGaP double heterostructures for laser cooling applications,” Proc. SPIE 7614, 76140B (2010).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Laser Cooling of Solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical Refrigeration: Advancing toward an all-solid-state cryocooler,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

M. Sheik-Bahae, B. Imangholi, M. P. Hasselbeck, R. I. Epstein, and S. Kurtz, “Advances in Laser Cooling of Semiconductors,” Proc. SPIE 6115, 611518 (2006).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92(24), 247403 (2004).
[CrossRef] [PubMed]

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, “Advances in laser cooling of thulium-doped glass,” J. Opt. Soc. Am. B 20(5), 1066–1074 (2003).
[CrossRef]

Thiede, J.

Tonelli, M.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
[CrossRef] [PubMed]

Valencia, J.

Varshni, Y.

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[CrossRef]

Vina, L.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[CrossRef]

Wang, C.

C. Wang, M. P. Hasselbeck, C.-Y. Li, and M. Sheik-Bahae, “Characterization of external quantum efficiency and absorption efficiency in GaAs/ InGaP double heterostructures for laser cooling applications,” Proc. SPIE 7614, 76140B (2010).
[CrossRef]

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Weimann, G.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[CrossRef]

Wyder, P.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[CrossRef]

Zadernovsky, A. A.

L. A. Rivlin and A. A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139(4-6), 219–222 (1997).
[CrossRef]

Appl. Phys. Lett.

E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75(9), 1258–1260 (1999).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, and M. Sheik-Bahae, “Cavity-enhanced absorption for optical refrigeration,” Appl. Phys. Lett. 96(18), 181106 (2010).
[CrossRef]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys., A Mater. Sci. Process. 64(2), 143–147 (1997).
[CrossRef]

Cryogenics

G. L. Mills and A. J. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2-3), 176–182 (2006).
[CrossRef]

J. Appl. Phys.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

J. B. Khurgin, “Band gap engineering for laser cooling of semiconductors,” J. Appl. Phys. 100(11), 113116 (2006).
[CrossRef]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a Solid-State Optical Cooler: An Approach to Cryogenic Refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Russ. Laser Res.

A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17(5), 471–479 (1996).
[CrossRef]

Laser Photonics Rev.

M. Sheik-Bahae and R. I. Epstein, “Laser Cooling of Solids,” Laser Photonics Rev. 3(1-2), 67–84 (2009).
[CrossRef]

Nat. Photonics

M. Sheik-Bahae and R. I. Epstein, “Optical Refrigeration: Advancing toward an all-solid-state cryocooler,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

Nature

R. I. Epstein, M. Buchwald, B. Edwards, T. Gosnell, and C. Mungan, “Observation of laser induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Opt. Commun.

L. A. Rivlin and A. A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139(4-6), 219–222 (1997).
[CrossRef]

Opt. Express

Phys. Rev. B

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

Phys. Rev. Lett.

M. Sheik-Bahae and R. I. Epstein, “Can laser light cool semiconductors?” Phys. Rev. Lett. 92(24), 247403 (2004).
[CrossRef] [PubMed]

G. Rupper, N. H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97(11), 117401 (2006).
[CrossRef] [PubMed]

Physica

Y. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[CrossRef]

Proc. SPIE

B. Imangholi, M. P. Hasselbeck, D. A. Bender, C. Wang, M. Sheik-Bahae, R. I. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Bigotta, and M. Tonelli, “Cooling of Yb:YLF using cavity enhanced resonant absorption,” Proc. SPIE 6907, 69070B (2008).
[CrossRef]

M. Sheik-Bahae, B. Imangholi, M. P. Hasselbeck, R. I. Epstein, and S. Kurtz, “Advances in Laser Cooling of Semiconductors,” Proc. SPIE 6115, 611518 (2006).
[CrossRef]

C. Wang, M. P. Hasselbeck, C.-Y. Li, and M. Sheik-Bahae, “Characterization of external quantum efficiency and absorption efficiency in GaAs/ InGaP double heterostructures for laser cooling applications,” Proc. SPIE 7614, 76140B (2010).
[CrossRef]

Z. Phys.

P. Pringsheim, “Zwei bemerkungen uËber den unterschied von lumineszenz- und Temperaturstrahlung,” Z. Phys. 57(11-12), 739–746 (1929).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Stark manifold and the cooling E4-E5 transition in Yb; (b) Spectra of cooling efficiency (Eq. (1) of the Yb:YLF for different temperatures in degree Kelvin with measured values of ηext = 0.995 and αb = 4.2*10−4 cm−1 [14]. Spectra for which cooling is possible are shown in blue; cooling ceases for temperatures below minimum achievable temperature (red). Cooling efficiency is enhanced near the E4-E5 transition (1020 nm), yielding minimum achievable temperature of ~115 K.

Fig. 2
Fig. 2

(a) Schematic of experimental setup; (b) Temperature of the crystal (Yb:YLF) and GaAs load as a function of time. High power laser is incident at t = 0 min, following by turn-off at t ~55min, when steady state was achieved, time is re-zeroed after the laser is turned off. Both Yb:YLF and GaAs temperatures are deduced by non-contact techniques. The cooling and warming dynamics are fitted with single exponential curves. Inset shows GaAs/InGaP spectra at two corresponding points (a: T = 265K, b: T = 165K).

Fig. 3
Fig. 3

(a) Comparison of temperature-dependent radiative and conductive thermal loads, as obtained from fitting the warm-up dynamics (Fig. 2b); (b) Comparison of cooling and total thermal load powers in the current Yb:YLF cryocooler, as estimated from the fits of full dynamics (Fig. 2b): at T = 300K, cooling power of 150mW is available, diminishing to a stready-state value of 20 mW at T = 165 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η c ( λ , T ) = η e x t [ 1 1 + α b α ( λ , T ) ] λ λ f ( T ) 1 ,
C ( T ) d T d t = η c ( λ , T ) P a b s ( λ , T ) + ε s A s σ 1 + χ ( T c 4 T 4 ) + N κ L ( T ) A L d L ( T c T ) .

Metrics