Abstract

In this paper, for the first time, we report on systematic theoretical and experimental investigation of Phase Contrast Optical Tweezers (PCOT) which could be an indispensable tool for micromanipulation of the transparent micro and nano objects such as biological tissues and vesicles. The quadrant photodiode detection scheme and the power-spectrum calibration method is shown to be valid for this case. We have shown that the phase objective with new designed phase plates can provide nearly aberration-free condition at a desired depth. This could be a valuable advantage for simultaneous in-depth micro-manipulations and visualization of the sample.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [CrossRef] [PubMed]
  2. C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
    [CrossRef] [PubMed]
  3. S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
    [CrossRef] [PubMed]
  4. T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sorensen, “Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frame shifting,” Proc. Natl. Acad. Sci. U.S.A. 104, 5830–5835 (2007).
    [CrossRef] [PubMed]
  5. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005).
    [CrossRef] [PubMed]
  6. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
    [CrossRef]
  7. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative Optical Trapping of Single Gold Nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
    [CrossRef]
  8. Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31, 2429–2431 (2006).
    [CrossRef] [PubMed]
  9. F. Hajizadeh, and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18, 551–559 (2010).
    [CrossRef] [PubMed]
  10. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  11. M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73, 1687 (2002).
    [CrossRef]
  12. R. Wayne, Light and video microscopy (Elsevier, 2009).
  13. http://microscopyu.com
  14. F. Zernike, “Phase-contrast, a new method for the microscopic observation of transparent objects,” Physica 9(Part I), 689–698 (1942a).
  15. F. Zernike, “Phase-contrast, a new method for the microscopic observation of transparent objects,” Physica 9(Part II), 974–986 (1942b).
  16. R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. Condens. Matter 18, S1151 (2006).
  17. F. Gittes, and C. F. Schmidt, “Interference model for back-focal plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998).
    [CrossRef]
  18. K. B. Sørensen, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
    [CrossRef]
  19. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, and P. A. Maia Neto, “Characterization of objective transmittance for optical tweezers,” Appl. Opt. 45, 4263–4269 (2006).
    [CrossRef]
  20. E. Schäffer, S. F. Nørrelykke, and J. Howard, “Surface Forces and Drag Coefficients of Microspheres near a Plane Surface Measured with Optical Tweezers,” Langmuir 23, 3654–3665 (2007).
    [CrossRef] [PubMed]
  21. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-Induced Heating in Optical Traps,” Biophys. J. 84, 1308–1316 (2003).
    [CrossRef] [PubMed]
  22. J. K. Dreyer, K. B. Sørensen, and L. Oddershede, “Improved axial position detection in optical tweezers measurements,” Appl. Opt. 43, 1991–1995 (2004).
    [CrossRef] [PubMed]
  23. S. N. S. Reihani, and B. Lene, “Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 32, 1998–2000 (2007).
    [CrossRef] [PubMed]
  24. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
    [CrossRef]
  25. P. C. Ke, and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159–2168 (1998).
    [CrossRef]
  26. A. Samadi and S. N. S. Reihani, “Optimal beam diameter for optical tweezers,” (Accepted for publication in Opt. Lett., Manuscript ID: 120249).
  27. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).
    [CrossRef]
  28. J. Marvin Weber, Handbook of optical materials (CRC Press, 2002).

2010

2008

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative Optical Trapping of Single Gold Nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef]

2007

T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sorensen, “Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frame shifting,” Proc. Natl. Acad. Sci. U.S.A. 104, 5830–5835 (2007).
[CrossRef] [PubMed]

E. Schäffer, S. F. Nørrelykke, and J. Howard, “Surface Forces and Drag Coefficients of Microspheres near a Plane Surface Measured with Optical Tweezers,” Langmuir 23, 3654–3665 (2007).
[CrossRef] [PubMed]

S. N. S. Reihani, and B. Lene, “Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 32, 1998–2000 (2007).
[CrossRef] [PubMed]

2006

2005

2004

K. B. Sørensen, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[CrossRef]

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
[CrossRef]

J. K. Dreyer, K. B. Sørensen, and L. Oddershede, “Improved axial position detection in optical tweezers measurements,” Appl. Opt. 43, 1991–1995 (2004).
[CrossRef] [PubMed]

2003

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-Induced Heating in Optical Traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[CrossRef] [PubMed]

2002

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73, 1687 (2002).
[CrossRef]

1998

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

P. C. Ke, and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159–2168 (1998).
[CrossRef]

F. Gittes, and C. F. Schmidt, “Interference model for back-focal plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998).
[CrossRef]

1995

1989

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef] [PubMed]

1987

A. Ashkin, and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

1986

Agarwal, R.

Allen, L.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

Aranda, S.

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. Condens. Matter 18, S1151 (2006).

Ashkin, A.

Ballerini, R.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73, 1687 (2002).
[CrossRef]

Berg, H. C.

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef] [PubMed]

Bezlyepkina, N.

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. Condens. Matter 18, S1151 (2006).

Bjorkholm, J. E.

Blair, D. F.

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef] [PubMed]

Block, S. M.

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef] [PubMed]

Booker, G. R.

Bryant, Z.

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[CrossRef] [PubMed]

Bustamante, C.

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[CrossRef] [PubMed]

Cai, C. W.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
[CrossRef]

Capitanio, M.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73, 1687 (2002).
[CrossRef]

Carpenter, A. E.

Chu, S.

Dholakia, K.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

Dimova, R.

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. Condens. Matter 18, S1151 (2006).

Dreyer, J. K.

Dunlap, D.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73, 1687 (2002).
[CrossRef]

Dziedzic, J. M.

Finzi, L.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73, 1687 (2002).
[CrossRef]

Flyvbjerg, H.

K. B. Sørensen, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[CrossRef]

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-Induced Heating in Optical Traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

F. Gittes, and C. F. Schmidt, “Interference model for back-focal plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998).
[CrossRef]

Giuntini, M.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73, 1687 (2002).
[CrossRef]

Grier, D. G.

Gu, M.

P. C. Ke, and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159–2168 (1998).
[CrossRef]

Hajizadeh, F.

Hansen, T. M.

T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sorensen, “Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frame shifting,” Proc. Natl. Acad. Sci. U.S.A. 104, 5830–5835 (2007).
[CrossRef] [PubMed]

Howard, J.

E. Schäffer, S. F. Nørrelykke, and J. Howard, “Surface Forces and Drag Coefficients of Microspheres near a Plane Surface Measured with Optical Tweezers,” Langmuir 23, 3654–3665 (2007).
[CrossRef] [PubMed]

Ke, P. C.

P. C. Ke, and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159–2168 (1998).
[CrossRef]

Laczik, Z.

Ladavac, K.

Lene, B.

Lieber, C. M.

Lipowsky, R.

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. Condens. Matter 18, S1151 (2006).

Lopez, H. A.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
[CrossRef]

Maia Neto, P. A.

Mazolli, A.

McGloin, D.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

Mesquita, O. N.

Nikolov, V.

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. Condens. Matter 18, S1151 (2006).

Nørrelykke, S. F.

E. Schäffer, S. F. Nørrelykke, and J. Howard, “Surface Forces and Drag Coefficients of Microspheres near a Plane Surface Measured with Optical Tweezers,” Langmuir 23, 3654–3665 (2007).
[CrossRef] [PubMed]

Oddershede, L.

Oddershede, L. B.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative Optical Trapping of Single Gold Nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef]

T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sorensen, “Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frame shifting,” Proc. Natl. Acad. Sci. U.S.A. 104, 5830–5835 (2007).
[CrossRef] [PubMed]

Padgett, M. J.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

Pavone, F. S.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73, 1687 (2002).
[CrossRef]

Perkins, T. T.

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-Induced Heating in Optical Traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

Reihani, S. N. S.

F. Hajizadeh, and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18, 551–559 (2010).
[CrossRef] [PubMed]

S. N. S. Reihani, and B. Lene, “Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 32, 1998–2000 (2007).
[CrossRef] [PubMed]

T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sorensen, “Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frame shifting,” Proc. Natl. Acad. Sci. U.S.A. 104, 5830–5835 (2007).
[CrossRef] [PubMed]

A. Samadi and S. N. S. Reihani, “Optimal beam diameter for optical tweezers,” (Accepted for publication in Opt. Lett., Manuscript ID: 120249).

Riske, K. A.

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. Condens. Matter 18, S1151 (2006).

Rocha, M. S.

Roichman, Y.

Romano, G.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73, 1687 (2002).
[CrossRef]

Samadi, A.

A. Samadi and S. N. S. Reihani, “Optimal beam diameter for optical tweezers,” (Accepted for publication in Opt. Lett., Manuscript ID: 120249).

Schäffer, E.

E. Schäffer, S. F. Nørrelykke, and J. Howard, “Surface Forces and Drag Coefficients of Microspheres near a Plane Surface Measured with Optical Tweezers,” Langmuir 23, 3654–3665 (2007).
[CrossRef] [PubMed]

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-Induced Heating in Optical Traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

F. Gittes, and C. F. Schmidt, “Interference model for back-focal plane displacement detection in optical tweezers,” Opt. Lett. 23, 7–9 (1998).
[CrossRef]

Schubert, O.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative Optical Trapping of Single Gold Nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef]

Selhuber-Unkel, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative Optical Trapping of Single Gold Nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef]

Seol, Y.

Simpson, N. B.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

Smith, S. B.

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative Optical Trapping of Single Gold Nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef]

Sorensen, M. A.

T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sorensen, “Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frame shifting,” Proc. Natl. Acad. Sci. U.S.A. 104, 5830–5835 (2007).
[CrossRef] [PubMed]

Sørensen, K. B.

J. K. Dreyer, K. B. Sørensen, and L. Oddershede, “Improved axial position detection in optical tweezers measurements,” Appl. Opt. 43, 1991–1995 (2004).
[CrossRef] [PubMed]

K. B. Sørensen, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[CrossRef]

Tan, S.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
[CrossRef]

Török, P.

Varga, P.

Viana, N. B.

Yu, G.

Zernike, F.

F. Zernike, “Phase-contrast, a new method for the microscopic observation of transparent objects,” Physica 9(Part II), 974–986 (1942b).

F. Zernike, “Phase-contrast, a new method for the microscopic observation of transparent objects,” Physica 9(Part I), 689–698 (1942a).

Zhang, Y.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
[CrossRef]

Zins, I.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative Optical Trapping of Single Gold Nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef]

Appl. Opt.

Biophys. J.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-Induced Heating in Optical Traps,” Biophys. J. 84, 1308–1316 (2003).
[CrossRef] [PubMed]

J. Mod. Opt.

N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, “Optical tweezers with increased axial trapping efficiency,” J. Mod. Opt. 45, 1943–1949 (1998).
[CrossRef]

P. C. Ke, and M. Gu, “Characterization of trapping force in the presence of spherical aberration,” J. Mod. Opt. 45, 2159–2168 (1998).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Condens. Matter

R. Dimova, S. Aranda, N. Bezlyepkina, V. Nikolov, K. A. Riske, and R. Lipowsky, “A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy,” J. Phys. Condens. Matter 18, S1151 (2006).

Langmuir

E. Schäffer, S. F. Nørrelykke, and J. Howard, “Surface Forces and Drag Coefficients of Microspheres near a Plane Surface Measured with Optical Tweezers,” Langmuir 23, 3654–3665 (2007).
[CrossRef] [PubMed]

Nano Lett.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical Trapping of Single-Walled Carbon Nanotubes,” Nano Lett. 4, 1415–1419 (2004).
[CrossRef]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative Optical Trapping of Single Gold Nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[CrossRef]

Nature

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[CrossRef] [PubMed]

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514–518 (1989).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Physica

F. Zernike, “Phase-contrast, a new method for the microscopic observation of transparent objects,” Physica 9(Part I), 689–698 (1942a).

F. Zernike, “Phase-contrast, a new method for the microscopic observation of transparent objects,” Physica 9(Part II), 974–986 (1942b).

Proc. Natl. Acad. Sci. U.S.A.

T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sorensen, “Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frame shifting,” Proc. Natl. Acad. Sci. U.S.A. 104, 5830–5835 (2007).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, and L. Finzi, “Calibration of optical tweezers with differential interference contrast signals,” Rev. Sci. Instrum. 73, 1687 (2002).
[CrossRef]

K. B. Sørensen, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[CrossRef]

Science

A. Ashkin, and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

Other

J. Marvin Weber, Handbook of optical materials (CRC Press, 2002).

R. Wayne, Light and video microscopy (Elsevier, 2009).

http://microscopyu.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

A typical image of a phospholipid vesicle and a trapped 1.09µm polystyrene bead in the (a) bright field, and (b) phase contrast modes.

Fig. 2.
Fig. 2.

The schematic of the experimental setup. L, M, DM, QP, CAA, and OPP denote lens, mirror, dichroic mirror, quadrant photodiode, condenser annular aperture, and objective phase plate, respectively. The inset shows the optical path of the marginal rays in the blown up view of the sample area. dw (d) represents the trapping depth when there is (is not) focus shift due to the refractive index mismatch.

Fig. 3.
Fig. 3.

The lateral (a) and axial (b) trap stiffness produced by the phase objective at depth of 4µm as a function of the laser power at the sample. The error bars represents the standard deviation of the 25 measurements.

Fig. 4.
Fig. 4.

The trap stiffness produced by the normal (black squares) and phase (red circles) objectives at a fixed laser power (40mW at the sample) in the (a) lateral and (b) axial directions. The error bars represents the standard deviation of the 25 measurements.

Fig. 5.
Fig. 5.

The intensity distributions around the focus in the (a) axial, and (c) radial directions at different depths. (b) and (d), respectively, show the axial and lateral averaged intensity gradient over the part of the focus which is covered by the bead as a function of depth. The black and gray curves represent data for the normal and phase objectives, respectively.

Fig. 6.
Fig. 6.

(a) The definition of α 1, α 2, α, r 1, r 2, and R. (b) A photograph of the phase plate implemented in the phase objective. r 1, r 2, and R were measured to be 1.60mm, 2.05mm and 3.30mm, respectively.

Fig. 7.
Fig. 7.

Lateral (a) and axial (b) intensity distribution at depth of 10µm produced by a new designed phase objective with a phase plate containing 2 (dashed) and 5 (dotted) rings. The solid line represents the intensity distribution produced by the normal objective at depth of 10µm. Note that the intensities are normalized to the maximum intensity at zero depth (no aberration).

Fig. 8.
Fig. 8.

The lateral (a) and axial (b) trap stiffness at depth of 4µm as a function of the laser power using the phase objective and presence of CAA. The error bars represents the standard deviation of the 25 measurements.

Fig. 9.
Fig. 9.

Stiffness in the (a) lateral and (b) axial directions using the phase objective with (red circles) and without(black squares) having condenser aperture in the optical path. Due to the weakness of the axial signal it was not possible to analyze the axial data above depth of 16µm. The laser power was measured to be 40mW at the sample. The error bars represents the standard deviation of the 25 measurements.

Fig. 10.
Fig. 10.

The experimental photodiode response for a polystyrene bead with diameter of 1.09µm with (black squares) and without (red circles) CAA in the optical path.

Fig. 11.
Fig. 11.

Focus geometry. Definition of r, θ, ϕ, x′ and w 0.

Fig. 12.
Fig. 12.

Calculated photodiode response for a 1.09µm polystyrene bead scanned through the focus of the objective in the lateral direction.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

p ( f ) = k B T 2 π 2 γ ( f 2 + f c 2 ) ,
I 0 = 0 α 0 exp [ ( f sin θ 1 ) 2 w 2 ] cos θ 1 sin θ 1 exp [ ik 0 ψ ( θ 1 , θ 2 , d ) ] ( τ s + τ p cos θ 2 )
× J 0 ( k 0 n 1 r sin θ 1 ) exp ( ik 0 n 2 z cos θ 2 ) d θ 1
δ I ( x ) I tot = 2 k 3 α π r 2 exp ( x 2 w 0 2 ) exp ( 1 4 k 2 w 0 2 θ 2 ) sin ( k x cos ϕ sin θ )
( I + I ) I tot = 2 I + I tot = 2 r 2 π 2 π 2 d ϕ θ min θ max d θ sin θ δ I ( x )

Metrics