Abstract

We have analytically investigated the polarization dependence of surface plasmon resonance in fiber structures having strong asymmetry. From our simulation experiments it is found that the resonance wavelength coincides with the zero-birefringence point of two degenerate modes, consequently demonstrating a new approach through which one can accurately locate the resonance peak of the system without having to analyze the loss spectrum. Results obtained using the new technique also reveal better performance in terms of accuracy and computation efficiency. Application of this approach in the analysis of refractive index and pressure sensors based on the single core D-shaped and symmetric multiple air-hole fibers respectively is presented as a demonstration. The proposed technique, which primarily involves the search of zero-birefringence point, may be generalized for the study of other plasmonic waveguide structures.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  2. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
    [CrossRef]
  3. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135–2136 (1968).
  4. S. Arismar Cerqueira., “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010).
    [CrossRef]
  5. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
    [CrossRef]
  6. C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16(13), 9645–9653 (2008).
    [CrossRef] [PubMed]
  7. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
    [CrossRef]
  8. D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. O. Bjarklev, “All-silica hollow-core microstructured Bragg fibers for biosensor application,” IEEE Sens. J. 8(7), 1280–1286 (2008).
    [CrossRef]
  9. D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
    [CrossRef]
  10. H.-Y. Lin, W.-H. Tsai, Y.-C. Tsao, and B.-C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt. 46(5), 800–806 (2007).
    [CrossRef] [PubMed]
  11. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
    [CrossRef] [PubMed]
  12. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
    [CrossRef]
  13. E. Pone, A. Hassani, S. Lacroix, and M. Skorobogatiy, "A Pressure Sensor Based on the Loss Birefringence of a Microstructured Optical Fiber Containing Metal Coated Elliptical Inclusions," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMZ3.
  14. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
    [CrossRef]
  15. J. Homola, “On the sensitivity of surface-plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 207–211 (1997).
    [CrossRef]
  16. B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
    [CrossRef]
  17. R. Paschotta, (2008, Oct). Encyclopedia of Laser Physics and Technology. [Online]. Available: http://www.rp-photonics.com/encyclopedia.html
  18. A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optic-fiber based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
    [CrossRef]
  19. A. Vasicek, “The reflection of light from a metal coated with thin films,” J. Phys. 1, 73–77 (1952).
  20. P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
    [CrossRef]
  21. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  22. M. Piliarik, J. Homola, and Z. Maníková, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
    [CrossRef]
  23. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
    [CrossRef] [PubMed]
  24. D. H. Spadoti, B. V. Borges, and M. A. Romero, “Birefringence enhancement by using D-shaped microstructure optical fibers,” J. Opt. A, Pure Appl. Opt. 11(8), 085105 (2009).
    [CrossRef]
  25. M. N. O. Sadiku, Elements of Electromagnetics (Oxford University Press, 2001), pp. 563–565.
  26. A. Kumar, S. Pilevar, and K. Thyagarajan, “Measurements on variation of birefringence with depth of polishing in elliptic core fibers,” Opt. Commun. 72(3-4), 187–189 (1989).
    [CrossRef]
  27. J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
    [CrossRef] [PubMed]

2010 (2)

S. Arismar Cerqueira., “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010).
[CrossRef]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

2009 (2)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

D. H. Spadoti, B. V. Borges, and M. A. Romero, “Birefringence enhancement by using D-shaped microstructure optical fibers,” J. Opt. A, Pure Appl. Opt. 11(8), 085105 (2009).
[CrossRef]

2008 (7)

J. Hou, D. Bird, A. George, S. Maier, B. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express 16(9), 5983–5990 (2008).
[CrossRef] [PubMed]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

C. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16(13), 9645–9653 (2008).
[CrossRef] [PubMed]

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. O. Bjarklev, “All-silica hollow-core microstructured Bragg fibers for biosensor application,” IEEE Sens. J. 8(7), 1280–1286 (2008).
[CrossRef]

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

2007 (5)

H.-Y. Lin, W.-H. Tsai, Y.-C. Tsao, and B.-C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt. 46(5), 800–806 (2007).
[CrossRef] [PubMed]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[CrossRef]

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

A. Hassani and M. Skorobogatiy, “Design criteria for microstructured-optic-fiber based surface-plasmon-resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
[CrossRef]

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
[CrossRef] [PubMed]

2004 (1)

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

2003 (1)

M. Piliarik, J. Homola, and Z. Maníková, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1997 (1)

J. Homola, “On the sensitivity of surface-plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 207–211 (1997).
[CrossRef]

1989 (1)

A. Kumar, S. Pilevar, and K. Thyagarajan, “Measurements on variation of birefringence with depth of polishing in elliptic core fibers,” Opt. Commun. 72(3-4), 187–189 (1989).
[CrossRef]

1968 (2)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[CrossRef]

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135–2136 (1968).

1952 (1)

A. Vasicek, “The reflection of light from a metal coated with thin films,” J. Phys. 1, 73–77 (1952).

Albert, J.

Andreani, L. C.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Arismar Cerqueira, S.

S. Arismar Cerqueira., “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010).
[CrossRef]

Aussenegg, F. R.

Badenes, G.

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

Bienstman, P.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Bigot, L.

Bird, D.

Bjarklev, A. O.

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. O. Bjarklev, “All-silica hollow-core microstructured Bragg fibers for biosensor application,” IEEE Sens. J. 8(7), 1280–1286 (2008).
[CrossRef]

Borges, B. V.

D. H. Spadoti, B. V. Borges, and M. A. Romero, “Birefringence enhancement by using D-shaped microstructure optical fibers,” J. Opt. A, Pure Appl. Opt. 11(8), 085105 (2009).
[CrossRef]

Bouwmans, G.

Chen, C.

Costa, R.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Cucinotta, A.

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. O. Bjarklev, “All-silica hollow-core microstructured Bragg fibers for biosensor application,” IEEE Sens. J. 8(7), 1280–1286 (2008).
[CrossRef]

Dems, M.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Ditlbacher, H.

Du, F.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Foroni, M.

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. O. Bjarklev, “All-silica hollow-core microstructured Bragg fibers for biosensor application,” IEEE Sens. J. 8(7), 1280–1286 (2008).
[CrossRef]

Galler, N.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

George, A.

Gupta, B. D.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[CrossRef]

Hassani, A.

Hohenau, A.

Homola, J.

M. Piliarik, J. Homola, and Z. Maníková, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

J. Homola, “On the sensitivity of surface-plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 207–211 (1997).
[CrossRef]

Hopman, W. C. L.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Hou, J.

Hugonin, J. P.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Jha, R.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[CrossRef]

Knight, J. C.

Koller, D. M.

Krenn, J. R.

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135–2136 (1968).

Kreuzer, M. P.

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

Kuhlmey, B.

Kumar, A.

A. Kumar, S. Pilevar, and K. Thyagarajan, “Measurements on variation of birefringence with depth of polishing in elliptic core fibers,” Opt. Commun. 72(3-4), 187–189 (1989).
[CrossRef]

Laegsgaard, J.

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. O. Bjarklev, “All-silica hollow-core microstructured Bragg fibers for biosensor application,” IEEE Sens. J. 8(7), 1280–1286 (2008).
[CrossRef]

Lalanne, P.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Laronche, A.

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

Lee, H. W.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

Leitner, A.

Leviatan, Y.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Li, C.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Lin, H.-Y.

Lu, Y.-Q.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Maier, S.

Maníková, Z.

M. Piliarik, J. Homola, and Z. Maníková, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[CrossRef]

Melloni, A.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Minkovich, V. P.

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

Monzón-Hernández, D.

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

Obayya, S. S. A.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[CrossRef]

Pan, S.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Panajotov, K.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

Passaro, D.

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. O. Bjarklev, “All-silica hollow-core microstructured Bragg fibers for biosensor application,” IEEE Sens. J. 8(7), 1280–1286 (2008).
[CrossRef]

Pilevar, S.

A. Kumar, S. Pilevar, and K. Thyagarajan, “Measurements on variation of birefringence with depth of polishing in elliptic core fibers,” Opt. Commun. 72(3-4), 187–189 (1989).
[CrossRef]

Piliarik, M.

M. Piliarik, J. Homola, and Z. Maníková, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[CrossRef]

Pinto, D.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Poli, F.

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. O. Bjarklev, “All-silica hollow-core microstructured Bragg fibers for biosensor application,” IEEE Sens. J. 8(7), 1280–1286 (2008).
[CrossRef]

Quiquempois, Y.

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135–2136 (1968).

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

Romero, M. A.

D. H. Spadoti, B. V. Borges, and M. A. Romero, “Birefringence enhancement by using D-shaped microstructure optical fibers,” J. Opt. A, Pure Appl. Opt. 11(8), 085105 (2009).
[CrossRef]

Rosa, L.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Russell, P. S. J.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

Schmidt, M. A.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

Selleri, S.

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. O. Bjarklev, “All-silica hollow-core microstructured Bragg fibers for biosensor application,” IEEE Sens. J. 8(7), 1280–1286 (2008).
[CrossRef]

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Sempere, L. P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

Sharma, A. K.

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[CrossRef]

Sheu, B.-C.

Shevchenko, Y. Y.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Shum, P.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Skorobogatiy, M.

Spadoti, D. H.

D. H. Spadoti, B. V. Borges, and M. A. Romero, “Birefringence enhancement by using D-shaped microstructure optical fibers,” J. Opt. A, Pure Appl. Opt. 11(8), 085105 (2009).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Thyagarajan, K.

A. Kumar, S. Pilevar, and K. Thyagarajan, “Measurements on variation of birefringence with depth of polishing in elliptic core fibers,” Opt. Commun. 72(3-4), 187–189 (1989).
[CrossRef]

Tsai, W.-H.

Tsao, Y.-C.

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

Uranus, H. P.

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Vasicek, A.

A. Vasicek, “The reflection of light from a metal coated with thin films,” J. Phys. 1, 73–77 (1952).

Villatoro, J.

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Wu, S.-T.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

Yan, M.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Yu, X.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Zhang, Y.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. S. J. Russell, “Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber,” Appl. Phys. Lett. 93(11), 111102 (2008).
[CrossRef]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[CrossRef]

D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, “Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules,” Appl. Phys. Lett. 93(8), 081106 (2008).
[CrossRef]

IEEE Sens. J. (2)

D. Passaro, M. Foroni, F. Poli, A. Cucinotta, S. Selleri, J. Laegsgaard, and A. O. Bjarklev, “All-silica hollow-core microstructured Bragg fibers for biosensor application,” IEEE Sens. J. 8(7), 1280–1286 (2008).
[CrossRef]

A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
[CrossRef]

J. Opt. (1)

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt. 12(1), 015005 (2010).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

D. H. Spadoti, B. V. Borges, and M. A. Romero, “Birefringence enhancement by using D-shaped microstructure optical fibers,” J. Opt. A, Pure Appl. Opt. 11(8), 085105 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

A. Vasicek, “The reflection of light from a metal coated with thin films,” J. Phys. 1, 73–77 (1952).

Opt. Commun. (1)

A. Kumar, S. Pilevar, and K. Thyagarajan, “Measurements on variation of birefringence with depth of polishing in elliptic core fibers,” Opt. Commun. 72(3-4), 187–189 (1989).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

B. Lee, S. Roh, and J. Park, “Current status of micro- and nano-structured optical fiber sensors,” Opt. Fiber Technol. 15(3), 209–221 (2009).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. L. Hopman, R. Costa, A. Melloni, L. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: A mode solver comparison,” Opt. Quantum Electron. 38(9-11), 731–759 (2007).
[CrossRef]

Rep. Prog. Phys. (1)

S. Arismar Cerqueira., “Recent progress and novel applications of photonic crystal fibers,” Rep. Prog. Phys. 73(2), 024401 (2010).
[CrossRef]

Sens. Actuators B Chem. (3)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

J. Homola, “On the sensitivity of surface-plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 207–211 (1997).
[CrossRef]

M. Piliarik, J. Homola, and Z. Maníková, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B Chem. 90(1-3), 236–242 (2003).
[CrossRef]

Z. Naturforsch. (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. 23A, 2135–2136 (1968).

Z. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216(4), 398–410 (1968).
[CrossRef]

Other (3)

R. Paschotta, (2008, Oct). Encyclopedia of Laser Physics and Technology. [Online]. Available: http://www.rp-photonics.com/encyclopedia.html

E. Pone, A. Hassani, S. Lacroix, and M. Skorobogatiy, "A Pressure Sensor Based on the Loss Birefringence of a Microstructured Optical Fiber Containing Metal Coated Elliptical Inclusions," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMZ3.

M. N. O. Sadiku, Elements of Electromagnetics (Oxford University Press, 2001), pp. 563–565.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Cross-section of the D-shaped fiber with 30 nm gold coating on the flat surface. Intensity distribution of Sz for (b) x-polarized mode (c) y-polarized mode at the resonance wavelength.

Fig. 2
Fig. 2

FEM simulation results (a) black solid curve is the imaginary part of the y-polarized coupled mode effective index; black dotted curve is the imaginary part of the x-polarized coupled mode effective index; blue solid curve plots the modal birefringence. (b) Real parts of the effective indices for two orthogonal modes.

Fig. 3
Fig. 3

Calculated resonance for different ambient refractive indices.

Fig. 4
Fig. 4

Calculated resonance for different (a) gold layer thickness (b) polishing depth.

Fig. 5
Fig. 5

Matching of zero birefringence with peak coupling loss in a photonic crystal fiber (inset) with elliptical air holes: elliptical ratio a/b = 0.82, uniform silver coating (red) thickness is 100 nm, pitch size is 1.5 µm.

Fig. 6
Fig. 6

(a) & (b) Two different x-polarized core confinement mode distribution patterns before and after resonance; (c) & (d) the same core confinement mode (insets) before and after resonance wavelength with their corresponding mode profiles along the horizontal cut at Y = 0.

Fig. 7
Fig. 7

Calculated birefringence for different hole elliptical ratio with Λ constant, a = 0.8 µm-δ and b = 0.8 µm + δ, where δ is the hole diameter change [13].

Metrics