Abstract

A technique is demonstrated for polarization demultiplexing of arbitrary complex-modulated signals. The technique is based entirely on the observation of samples in Stokes space, does not involve demodulation and is modulation format independent. The data in Stokes space is used to find the best fit plane and the normal to it which contains the origin. This normal identifies the two orthogonal polarization states of transmission and the desired polarization alignment transformation matrix. The technique is verified experimentally and is compared with the constant modulus algorithm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Treichler and B. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans. Acoust. Speech Signal Process. 31(2), 459–472 (1983).
    [CrossRef]
  2. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [CrossRef]
  3. H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing, (John Wiley & Sons, 1998).
  4. R. Noe, “Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery,” IEEE J. Lightwave Technol. 23(2), 802–808 (2005).
    [CrossRef]
  5. J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear Fiber Impairments Mitigation of 40-Gbit/s Polarization-Multiplexed QPSK by Digital Processing in a Coherent Receiver,” IEEE J. Lightwave Technol. 26(1), 36–42 (2008).
    [CrossRef]
  6. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  7. P. Boffi, M. Ferrario, L. Marazzi, P. Martelli, P. Parolari, A. Righetti, R. Siano, and M. Martinelli, “Measurement of PMD tolerance in 40-Gb/s polarization-multiplexed RZ-DQPSK,” Opt. Express 16(17), 13398–13404 (2008).
    [CrossRef] [PubMed]
  8. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” IEEE J. Lightwave Technol. 24(11), 4172–4183 (2006).
    [CrossRef]
  9. M. Tseytlin, O. Ritterbush, and A. Salamon, “Digital, endless polarization control for polarization multiplexed fiber-optic communications,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF83.
  10. N. Leven, Kaneda, and Y. Chen, “A Real-Tme CMA-Based 10 Gb/s Polarization Demultiplexing Coherent Receiver Implemented in an FPGA,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuO2.
  11. D. H. Brandwood, “A complex gradient operator and its application in adaptive array theory,” IEE Proc. Commun. Radar and Signal Process. F 130(1), 11–16 (1983).
    [CrossRef]
  12. H. Zhang, Z. Tao, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, “Polarization demultiplexing based on independent component analysis in optical coherent receivers,” in 34th European Conference on Optical Communication, ECOC 2008, (Brussels, 2008), pp. 1–2.
  13. G. Arfken, Mathematical Methods for Physicists, (Academic Press, 1985).
  14. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach, (John Wiley & Sons, 1998), Chap. 4.
  15. C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” IEEE J. Lightwave Technol. 6(7), 1185–1190 (1988).
    [CrossRef]

2008

J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear Fiber Impairments Mitigation of 40-Gbit/s Polarization-Multiplexed QPSK by Digital Processing in a Coherent Receiver,” IEEE J. Lightwave Technol. 26(1), 36–42 (2008).
[CrossRef]

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
[CrossRef] [PubMed]

P. Boffi, M. Ferrario, L. Marazzi, P. Martelli, P. Parolari, A. Righetti, R. Siano, and M. Martinelli, “Measurement of PMD tolerance in 40-Gb/s polarization-multiplexed RZ-DQPSK,” Opt. Express 16(17), 13398–13404 (2008).
[CrossRef] [PubMed]

2006

M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” IEEE J. Lightwave Technol. 24(11), 4172–4183 (2006).
[CrossRef]

2005

R. Noe, “Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery,” IEEE J. Lightwave Technol. 23(2), 802–808 (2005).
[CrossRef]

1988

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” IEEE J. Lightwave Technol. 6(7), 1185–1190 (1988).
[CrossRef]

1983

D. H. Brandwood, “A complex gradient operator and its application in adaptive array theory,” IEE Proc. Commun. Radar and Signal Process. F 130(1), 11–16 (1983).
[CrossRef]

J. Treichler and B. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans. Acoust. Speech Signal Process. 31(2), 459–472 (1983).
[CrossRef]

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Agee, B.

J. Treichler and B. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans. Acoust. Speech Signal Process. 31(2), 459–472 (1983).
[CrossRef]

Bergano, N. S.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” IEEE J. Lightwave Technol. 6(7), 1185–1190 (1988).
[CrossRef]

Bigo, S.

J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear Fiber Impairments Mitigation of 40-Gbit/s Polarization-Multiplexed QPSK by Digital Processing in a Coherent Receiver,” IEEE J. Lightwave Technol. 26(1), 36–42 (2008).
[CrossRef]

Boffi, P.

Brandwood, D. H.

D. H. Brandwood, “A complex gradient operator and its application in adaptive array theory,” IEE Proc. Commun. Radar and Signal Process. F 130(1), 11–16 (1983).
[CrossRef]

Charlet, G.

J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear Fiber Impairments Mitigation of 40-Gbit/s Polarization-Multiplexed QPSK by Digital Processing in a Coherent Receiver,” IEEE J. Lightwave Technol. 26(1), 36–42 (2008).
[CrossRef]

Ferrario, M.

Marazzi, L.

Mardoyan, H.

J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear Fiber Impairments Mitigation of 40-Gbit/s Polarization-Multiplexed QPSK by Digital Processing in a Coherent Receiver,” IEEE J. Lightwave Technol. 26(1), 36–42 (2008).
[CrossRef]

Martelli, P.

P. Boffi, M. Ferrario, L. Marazzi, P. Martelli, P. Parolari, A. Righetti, R. Siano, and M. Martinelli, “Measurement of PMD tolerance in 40-Gb/s polarization-multiplexed RZ-DQPSK,” Opt. Express 16(17), 13398–13404 (2008).
[CrossRef] [PubMed]

M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” IEEE J. Lightwave Technol. 24(11), 4172–4183 (2006).
[CrossRef]

Martinelli, M.

P. Boffi, M. Ferrario, L. Marazzi, P. Martelli, P. Parolari, A. Righetti, R. Siano, and M. Martinelli, “Measurement of PMD tolerance in 40-Gb/s polarization-multiplexed RZ-DQPSK,” Opt. Express 16(17), 13398–13404 (2008).
[CrossRef] [PubMed]

M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” IEEE J. Lightwave Technol. 24(11), 4172–4183 (2006).
[CrossRef]

Noe, R.

R. Noe, “Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery,” IEEE J. Lightwave Technol. 23(2), 802–808 (2005).
[CrossRef]

Pardo, O. B.

J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear Fiber Impairments Mitigation of 40-Gbit/s Polarization-Multiplexed QPSK by Digital Processing in a Coherent Receiver,” IEEE J. Lightwave Technol. 26(1), 36–42 (2008).
[CrossRef]

Parolari, P.

Pietralunga, S. M.

M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” IEEE J. Lightwave Technol. 24(11), 4172–4183 (2006).
[CrossRef]

Poole, C. D.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” IEEE J. Lightwave Technol. 6(7), 1185–1190 (1988).
[CrossRef]

Renaudier, J.

J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear Fiber Impairments Mitigation of 40-Gbit/s Polarization-Multiplexed QPSK by Digital Processing in a Coherent Receiver,” IEEE J. Lightwave Technol. 26(1), 36–42 (2008).
[CrossRef]

Righetti, A.

Salsi, M.

J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear Fiber Impairments Mitigation of 40-Gbit/s Polarization-Multiplexed QPSK by Digital Processing in a Coherent Receiver,” IEEE J. Lightwave Technol. 26(1), 36–42 (2008).
[CrossRef]

Savory, S. J.

Schulte, H. J.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” IEEE J. Lightwave Technol. 6(7), 1185–1190 (1988).
[CrossRef]

Siano, R.

Tran, P.

J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear Fiber Impairments Mitigation of 40-Gbit/s Polarization-Multiplexed QPSK by Digital Processing in a Coherent Receiver,” IEEE J. Lightwave Technol. 26(1), 36–42 (2008).
[CrossRef]

Treichler, J.

J. Treichler and B. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans. Acoust. Speech Signal Process. 31(2), 459–472 (1983).
[CrossRef]

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Wagner, R. E.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” IEEE J. Lightwave Technol. 6(7), 1185–1190 (1988).
[CrossRef]

IEE Proc. Commun. Radar and Signal Process. F

D. H. Brandwood, “A complex gradient operator and its application in adaptive array theory,” IEE Proc. Commun. Radar and Signal Process. F 130(1), 11–16 (1983).
[CrossRef]

IEEE J. Lightwave Technol.

C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” IEEE J. Lightwave Technol. 6(7), 1185–1190 (1988).
[CrossRef]

R. Noe, “Phase noise-tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery,” IEEE J. Lightwave Technol. 23(2), 802–808 (2005).
[CrossRef]

J. Renaudier, G. Charlet, M. Salsi, O. B. Pardo, H. Mardoyan, P. Tran, and S. Bigo, “Linear Fiber Impairments Mitigation of 40-Gbit/s Polarization-Multiplexed QPSK by Digital Processing in a Coherent Receiver,” IEEE J. Lightwave Technol. 26(1), 36–42 (2008).
[CrossRef]

M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” IEEE J. Lightwave Technol. 24(11), 4172–4183 (2006).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process.

J. Treichler and B. Agee, “A new approach to multipath correction of constant modulus signals,” IEEE Trans. Acoust. Speech Signal Process. 31(2), 459–472 (1983).
[CrossRef]

IEEE Trans. Inf. Theory

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Opt. Express

Other

M. Tseytlin, O. Ritterbush, and A. Salamon, “Digital, endless polarization control for polarization multiplexed fiber-optic communications,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper MF83.

N. Leven, Kaneda, and Y. Chen, “A Real-Tme CMA-Based 10 Gb/s Polarization Demultiplexing Coherent Receiver Implemented in an FPGA,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuO2.

H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing, (John Wiley & Sons, 1998).

H. Zhang, Z. Tao, L. Liu, S. Oda, T. Hoshida, and J. C. Rasmussen, “Polarization demultiplexing based on independent component analysis in optical coherent receivers,” in 34th European Conference on Optical Communication, ECOC 2008, (Brussels, 2008), pp. 1–2.

G. Arfken, Mathematical Methods for Physicists, (Academic Press, 1985).

C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach, (John Wiley & Sons, 1998), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Ideal polarization-multiplexed QPSK data in Stokes space. Inset shows QPSK data in the complex plane.

Fig. 2
Fig. 2

Boundaries of the polarization-multiplexed data in Stokes space. Inset shows hypothetical modulation format covering all points within the unit circle of the complex plane.

Fig. 3
Fig. 3

Measured 40Gb/s polarization-multiplexed QPSK data in Stokes space. The data set includes transitions that traverse the complex plane. The upper-left inset shows the same set of data after polarization alignment.

Fig. 4
Fig. 4

Demodulated 40Gb/s polarization-multiplexed QPSK data from two polarization channels. Each polarization channel shows about 10000 symbols.

Fig. 5
Fig. 5

Speed of convergence of the CMA technique for different values of step size μ.

Fig. 6
Fig. 6

Speed of convergence of Stokes space polarization alignment.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

W i + 1 = W i μ ε i X i H ,
M = ( a b b * a * ) .
M 1 = ( a * b b * a ) .
E = 1 2 ( e x e y ) = 1 2 ( a x exp ( j ω t + j ϕ x ) a y exp ( j ω t + j ϕ y ) ) ,
S = ( s 0 s 1 s 2 s 3 ) = 1 2 ( e x e x * + e y e y * e x e x * e y e y * e x * e y + e x e y * j e x * e y + j e x e y * ) = 1 2 ( a x 2 + a y 2 a x 2 a y 2 2 a x a y cos Δ ϕ 2 a x a y sin Δ ϕ ) ,
E = 1 2 ( 1 r exp ( j θ ) ) ,
S = ( s 0 s 1 s 2 s 3 ) = 1 2 ( 1 + r 2 1 r 2 2 r cos θ 2 r sin θ ) .
J 1 = ( cos ( α ) sin ( α ) exp ( j Δ ϕ ) ) , J 2 = ( sin ( α ) cos ( α ) exp ( j Δ ϕ ) ) ,
M 1 = ( cos ( α ) exp ( j Δ ϕ / 2 ) sin ( α ) exp ( j Δ ϕ / 2 ) sin ( α ) exp ( j Δ ϕ / 2 ) cos ( α ) exp ( j Δ ϕ / 2 ) ) .
( e h e v ) = M 1 ( e x e y ) .
ε i = x i s .
ε i = ( ( y h y h * 1 ) y h ( y v y v * 1 ) y v ) .

Metrics