Abstract

We compare formats for optical intensity modulation limited by thermal noise with the assumption of having ideal devices. At the same bitrate and bandwidth, a hitherto unknown format turns out to be more power efficient than known formats. This new modulation, which is a hybrid between on-off keying and phase-shift keying, belongs to the subcarrier modulation family. At asymptotically high signal-to-noise ratios, this hybrid scheme has a 1.2 dB average electrical power gain and 0.6 dB average optical power gain compared to OOK, while it has a 3.0 dB average electrical power gain and 2.1 dB average optical power gain compared to subcarrier QPSK.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R.-J. Essiambre, "Advanced modulation formats for high-capacity optical transport networks," J. Lightwave Technol. 24, 4711-4728 (2006).
    [CrossRef]
  2. S. Randel, F. Breyer, and S. C. J. Lee, "High-speed transmission over multimode optical fibers," in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2008), paper OWR2.
  3. P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, "32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL," Electron. Lett. 45, 366-368 (2009).
    [CrossRef]
  4. B. Inan, S. C. J. Lee, S. Randel, I. Neokosmidis, A. M. J. Koonen, and J. W. Walewski, "Impact of LED nonlinearity on discrete multitone modulation," J. Opt. Commun. Netw. 1, 439-451 (2009).
    [CrossRef]
  5. J. E. Cunningham, D. Beckman, X. Zheng, D. Huang, T. Sze, and A. V. Krishnamoorthy, "PAM-4 signaling over VCSELs with 0.13 μm CMOS chip technology," Opt. Express 14, 12028-12038 (2006).
    [CrossRef] [PubMed]
  6. S. Hranilovic and F. R. Kschischang, "Capacity bounds for power-and band-limited optical intensity channels corrupted by Gaussian noise," IEEE Trans. Information Theory 50, 784-795 (2004).
    [CrossRef]
  7. S. Walklin and J. Conradi, "Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems," J. Lightwave Technol. 17, 2235-2248 (1999).
    [CrossRef]
  8. S. Hranilovic, "On the design of bandwidth efficient signalling for indoor wireless optical channels," Int. J. Commun. Systems 18, 205-228 (2005).
    [CrossRef]
  9. J. M. Kahn and J. R. Barry, "Wireless infrared communications," IEEE Proc. 85, 265-298 (1997). (Invited Paper).
    [CrossRef]
  10. J. R. Barry, Wireless Infrared Communications (Kluwer Academic Publishers, Norwell, MA, USA, 1994).
    [CrossRef]
  11. A. O. J. Wiberg, B.-E. Olsson, and P. A. Andrekson, "Single cycle subcarrier modulation," in Optical Fiber Communication Conference, OSA Technical Digest, (2009), paper OTuE1.
  12. B.-E. Olsson and A. Alping, "Electro-optical subcarrier modulation transmitter for 100 GbE DWDM transport," in Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, OSA Technical Digest, (2008), paper SaF3.
  13. B.-E. Olsson and M. Skold, "QPSK transmitter based on optical amplitude modulation of electrically generated QPSK signal," in Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, OSA Technical Digest, (2008), paper SaA3.
  14. S. Hranilovic and D. A. Johns, "A multilevel modulation scheme for high-speed wireless infrared communications," in IEEE International Symposium on Circuits and Systems, (1999), pp. 338-341.
  15. R. You and J. M. Kahn, "Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals," IEEE Trans. Commun. 49, 2164-2171 (2001).
    [CrossRef]
  16. S. C. J. Lee, F. Breyer, S. Randel, and A. M. J. Koonen, "High-speed transmission over multimode using discrete multitone modulation," J. Opt. Netw. 7, 183-196 (2008). (Invited Paper).
    [CrossRef]
  17. B.-E. Olsson, J. M°artensson, A. Kristiansson, and A. Alping, "RF-assisted optical dual-carrier 112 Gbit/s polarization-multiplexed 16-QAM transmitter," in Optical Fiber Communication Conference, OSA Technical Digest, (2010), paper OMK5.
  18. H. Yang, S. C. J. Lee, E. Tangdiongga, C. Okonkwo, H. P. A. van den Boom, F. Breyer, S. Randel, and A. M. J. Koonen, "47.4 Gb/s transmission over 100 m graded-index plastic optical fiber based on rate-adaptive discrete multitone modulation," J. Lightwave Technol. 28, 352-359 (2010).
    [CrossRef]
  19. W. Kang and S. Hranilovic, "Optical power reduction for multiple-subcarrier modulated indoor wireless optical channels," in IEEE International Conference on Communications, (2006), pp. 2743-2748.
  20. X. Liang, W. Li, W. Ma, and K. Wang, "A simple peak-to-average power ratio reduction scheme for all optical orthogonal frequency division multiplexing systems with intensity modulation and direct detection," Opt. Express 17, 15614-15622 (2009).
    [CrossRef] [PubMed]
  21. H. Elgala, R. Mesleh, and H. Haas, "A study of LED nonlinearity effects on optical wireless transmission using OFDM," in Proceedings of the Sixth international conference on Wireless and Optical Communications Networks, (2009), pp. 388-392.
  22. S. Hranilovic and F. R. Kschischang, "Optical intensity-modulated direct detection channels: signal space and lattice codes," IEEE Trans. Information Theory 49, 1385-1399 (2003).
    [CrossRef]
  23. W. Mao and J. M. Kahn, "Lattice codes for amplified direct-detection optical systems," IEEE Trans. Commun. 56, 1137-1145 (2008).
    [CrossRef]
  24. G. P. Agrawal, Lightwave Technology (John Wiley & Sons, Inc., New Jersey, 2005).
    [CrossRef]
  25. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, "Capacity limits of optical fiber networks," J. Lightwave Technol. 28, 662-701 (2010). (Invited Paper).
    [CrossRef]
  26. M. C. Gursoy, "Error rate analysis for peaky signaling over fading channels," IEEE Trans. Commun. 57, 2546-2550 (2009).
    [CrossRef]
  27. J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, New York, 2008), 5th ed.
  28. K. L. Kaiser, Electromagnetic Compatibility Handbook (CRC Press, 2004).
  29. M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques (Prentice Hall PTR, USA, 1995).

2010 (2)

2009 (4)

M. C. Gursoy, "Error rate analysis for peaky signaling over fading channels," IEEE Trans. Commun. 57, 2546-2550 (2009).
[CrossRef]

X. Liang, W. Li, W. Ma, and K. Wang, "A simple peak-to-average power ratio reduction scheme for all optical orthogonal frequency division multiplexing systems with intensity modulation and direct detection," Opt. Express 17, 15614-15622 (2009).
[CrossRef] [PubMed]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, "32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL," Electron. Lett. 45, 366-368 (2009).
[CrossRef]

B. Inan, S. C. J. Lee, S. Randel, I. Neokosmidis, A. M. J. Koonen, and J. W. Walewski, "Impact of LED nonlinearity on discrete multitone modulation," J. Opt. Commun. Netw. 1, 439-451 (2009).
[CrossRef]

2008 (2)

2006 (2)

2005 (1)

S. Hranilovic, "On the design of bandwidth efficient signalling for indoor wireless optical channels," Int. J. Commun. Systems 18, 205-228 (2005).
[CrossRef]

2004 (1)

S. Hranilovic and F. R. Kschischang, "Capacity bounds for power-and band-limited optical intensity channels corrupted by Gaussian noise," IEEE Trans. Information Theory 50, 784-795 (2004).
[CrossRef]

2003 (1)

S. Hranilovic and F. R. Kschischang, "Optical intensity-modulated direct detection channels: signal space and lattice codes," IEEE Trans. Information Theory 49, 1385-1399 (2003).
[CrossRef]

2001 (1)

R. You and J. M. Kahn, "Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals," IEEE Trans. Commun. 49, 2164-2171 (2001).
[CrossRef]

1999 (1)

1997 (1)

J. M. Kahn and J. R. Barry, "Wireless infrared communications," IEEE Proc. 85, 265-298 (1997). (Invited Paper).
[CrossRef]

Barry, J. R.

J. M. Kahn and J. R. Barry, "Wireless infrared communications," IEEE Proc. 85, 265-298 (1997). (Invited Paper).
[CrossRef]

Beckman, D.

Breyer, F.

Conradi, J.

Cunningham, J. E.

Essiambre, R.-J.

Foschini, G. J.

Goebel, B.

Gursoy, M. C.

M. C. Gursoy, "Error rate analysis for peaky signaling over fading channels," IEEE Trans. Commun. 57, 2546-2550 (2009).
[CrossRef]

Gustavsson, J. S.

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, "32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL," Electron. Lett. 45, 366-368 (2009).
[CrossRef]

Hranilovic, S.

S. Hranilovic, "On the design of bandwidth efficient signalling for indoor wireless optical channels," Int. J. Commun. Systems 18, 205-228 (2005).
[CrossRef]

S. Hranilovic and F. R. Kschischang, "Capacity bounds for power-and band-limited optical intensity channels corrupted by Gaussian noise," IEEE Trans. Information Theory 50, 784-795 (2004).
[CrossRef]

S. Hranilovic and F. R. Kschischang, "Optical intensity-modulated direct detection channels: signal space and lattice codes," IEEE Trans. Information Theory 49, 1385-1399 (2003).
[CrossRef]

Huang, D.

Inan, B.

Kahn, J. M.

W. Mao and J. M. Kahn, "Lattice codes for amplified direct-detection optical systems," IEEE Trans. Commun. 56, 1137-1145 (2008).
[CrossRef]

R. You and J. M. Kahn, "Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals," IEEE Trans. Commun. 49, 2164-2171 (2001).
[CrossRef]

J. M. Kahn and J. R. Barry, "Wireless infrared communications," IEEE Proc. 85, 265-298 (1997). (Invited Paper).
[CrossRef]

Koonen, A. M. J.

Kramer, G.

Krishnamoorthy, A. V.

Kschischang, F. R.

S. Hranilovic and F. R. Kschischang, "Capacity bounds for power-and band-limited optical intensity channels corrupted by Gaussian noise," IEEE Trans. Information Theory 50, 784-795 (2004).
[CrossRef]

S. Hranilovic and F. R. Kschischang, "Optical intensity-modulated direct detection channels: signal space and lattice codes," IEEE Trans. Information Theory 49, 1385-1399 (2003).
[CrossRef]

Lee, S. C. J.

Li, W.

Liang, X.

Ma, W.

Mao, W.

W. Mao and J. M. Kahn, "Lattice codes for amplified direct-detection optical systems," IEEE Trans. Commun. 56, 1137-1145 (2008).
[CrossRef]

Neokosmidis, I.

Okonkwo, C.

Randel, S.

Sze, T.

Tangdiongga, E.

van den Boom, H. P. A.

Walewski, J. W.

Walklin, S.

Wang, K.

Westbergh, P.

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, "32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL," Electron. Lett. 45, 366-368 (2009).
[CrossRef]

Winzer, P. J.

Yang, H.

You, R.

R. You and J. M. Kahn, "Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals," IEEE Trans. Commun. 49, 2164-2171 (2001).
[CrossRef]

Zheng, X.

Electron. Lett. (1)

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, "32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL," Electron. Lett. 45, 366-368 (2009).
[CrossRef]

IEEE Proc. (1)

J. M. Kahn and J. R. Barry, "Wireless infrared communications," IEEE Proc. 85, 265-298 (1997). (Invited Paper).
[CrossRef]

IEEE Trans. Commun. (3)

R. You and J. M. Kahn, "Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals," IEEE Trans. Commun. 49, 2164-2171 (2001).
[CrossRef]

W. Mao and J. M. Kahn, "Lattice codes for amplified direct-detection optical systems," IEEE Trans. Commun. 56, 1137-1145 (2008).
[CrossRef]

M. C. Gursoy, "Error rate analysis for peaky signaling over fading channels," IEEE Trans. Commun. 57, 2546-2550 (2009).
[CrossRef]

IEEE Trans. Information Theory (2)

S. Hranilovic and F. R. Kschischang, "Optical intensity-modulated direct detection channels: signal space and lattice codes," IEEE Trans. Information Theory 49, 1385-1399 (2003).
[CrossRef]

S. Hranilovic and F. R. Kschischang, "Capacity bounds for power-and band-limited optical intensity channels corrupted by Gaussian noise," IEEE Trans. Information Theory 50, 784-795 (2004).
[CrossRef]

Int. J. Commun. Systems (1)

S. Hranilovic, "On the design of bandwidth efficient signalling for indoor wireless optical channels," Int. J. Commun. Systems 18, 205-228 (2005).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

J. Opt. Netw. (1)

Opt. Express (2)

Other (13)

S. Randel, F. Breyer, and S. C. J. Lee, "High-speed transmission over multimode optical fibers," in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (2008), paper OWR2.

J. R. Barry, Wireless Infrared Communications (Kluwer Academic Publishers, Norwell, MA, USA, 1994).
[CrossRef]

A. O. J. Wiberg, B.-E. Olsson, and P. A. Andrekson, "Single cycle subcarrier modulation," in Optical Fiber Communication Conference, OSA Technical Digest, (2009), paper OTuE1.

B.-E. Olsson and A. Alping, "Electro-optical subcarrier modulation transmitter for 100 GbE DWDM transport," in Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, OSA Technical Digest, (2008), paper SaF3.

B.-E. Olsson and M. Skold, "QPSK transmitter based on optical amplitude modulation of electrically generated QPSK signal," in Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, OSA Technical Digest, (2008), paper SaA3.

S. Hranilovic and D. A. Johns, "A multilevel modulation scheme for high-speed wireless infrared communications," in IEEE International Symposium on Circuits and Systems, (1999), pp. 338-341.

H. Elgala, R. Mesleh, and H. Haas, "A study of LED nonlinearity effects on optical wireless transmission using OFDM," in Proceedings of the Sixth international conference on Wireless and Optical Communications Networks, (2009), pp. 388-392.

W. Kang and S. Hranilovic, "Optical power reduction for multiple-subcarrier modulated indoor wireless optical channels," in IEEE International Conference on Communications, (2006), pp. 2743-2748.

B.-E. Olsson, J. M°artensson, A. Kristiansson, and A. Alping, "RF-assisted optical dual-carrier 112 Gbit/s polarization-multiplexed 16-QAM transmitter," in Optical Fiber Communication Conference, OSA Technical Digest, (2010), paper OMK5.

G. P. Agrawal, Lightwave Technology (John Wiley & Sons, Inc., New Jersey, 2005).
[CrossRef]

J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, New York, 2008), 5th ed.

K. L. Kaiser, Electromagnetic Compatibility Handbook (CRC Press, 2004).

M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques (Prentice Hall PTR, USA, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Passband transceiver (a) and equivalent baseband model (b) of the optical intensity channel.

Fig. 2.
Fig. 2.

Electrical baseband spectra for the various modulation formats. (The Dirac impulse is due to the DC bias.)

Fig. 3.
Fig. 3.

Optical spectra for the various modulation formats.

Fig. 4.
Fig. 4.

BER using simulations of the system model in Fig. 1, and theory according to Eqs. (5–9).

Tables (1)

Tables Icon

Table 1. Asymptotic performance of intensity modulation formats relative to OOK. The results for the previously known formats, OOK and QPSKSCM, can be found in [10, Ch. 5] and [9].

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

z ( t ) = 2 cx ( t ) cos ( 2 π ν 0 t + θ )
s 0 ( t ) = 0
s 1 ( t ) = A [ 1 + sin ( 2 π f c t ) ]
s 2 ( t ) = A [ 1 + sin ( 2 π f c t + 2 π 3 ) ]
s 3 ( t ) = A [ 1 + sin ( 2 π f c t 2 π 3 ) ] ,
s 0 ( t ) = 0
s 1 ( t ) = 2 E s T s ,
s i ( t ) = 2 E s 3 T s [ 1 + sin ( 2 π f c t + π i 2 ) ]
P b ( OOK ) = Q ( E b N 0 ) ,
P b 2 KB M log 2 M Q ( d 2 2 N 0 ) ,
d 2 = min i j 0 T s ( s i ( t ) s j ( t ) ) 2 dt ,
P b ( QPSK SCM ) Q ( 2 E b 3 N 0 ) ,
P b ( OOPSK SCM ) 2 Q ( 4 E b 3 N 0 ) .
P ¯ e gain = 10 log 10 P ¯ e ( OOK ) P e [ d B ]
P ¯ o gain = 10 log 10 P ¯ o ( OOK ) P o [ d B ]
P e peak = max t x 2 ( t ) = max i , t s i 2 ( t ) .

Metrics