Y. Meroz, I. M. Sokolov, and J. Klafter,
“Subdiffusion of mixed origins: when ergodicity and nonergodicity
coexist,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 010101
(2010).

[CrossRef]

G. Baumann, R. F. Place, and Z. Földes-Papp,
“Meaningful interpretation of subdiffusive measurements in living
cells (crowded environment) by fluorescence fluctuation
microscopy,” Curr. Pharm. Biotechnol. 11, 527–543
(2010).

[CrossRef]
[PubMed]

A. C. Beveridge, J. H. Jett, R. A. Keller, L. R.
Pratt, and T. M. Yoshida, “Reduction of diffusion broadening in
flow by analysis of time-gated single-molecule data,” Analyst
(Lond.) (2010), doi:10.1039/b926956h.

L. Luchowski, Z. Gryczynski, Z. Földes-Papp, A.
Chang, J. Borejdo, P. Sarkar, and I. Gryczynski, “Polarized
fluorescent nanospheres,” Opt. Express 18, 4289–4299
(2010).

[CrossRef]
[PubMed]

Z. Földes-Papp, S.-C. J. Liao, T. You, and B.
Barbieri, “Reducing background contributions in fluorescence
fluctuation time-traces for single-molecule measurements in
solution,” Curr. Pharm. Biotechnol. 10, 532–542
(2009).

[CrossRef]
[PubMed]

J. Szymanski, and M. Weiss, “Elucidating
the origin of anomalous diffusion in crowded fluids,” Phys. Rev.
Lett. 103, 038102 (2009).

[CrossRef]
[PubMed]

A. Lubelski, I. M. Sokolov, and J. Klafter,
“Nonergodicity mimics inhomogeneity in single particle
tracking,” Phys. Rev. Lett. 100, 0250602 (2008).

[CrossRef]

Y. He, S. Burov, R. Metzler, and E. Barkai,
“Random time-scale invariant diffusion and transport
coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 101,
058101 (2008).

I. V. Gopich, “Concentration effects in
“single-molecule” spectroscopy,” J. Phys.
Chem. B 112, 6214–6220 (2008).

[CrossRef]

Z. Földes-Papp, “Fluorescence fluctuation
spectroscopic approaches to the study of a single molecule diffusing in
solution and a live cell without systemic drift or convection: a theoretical
study,” Curr. Pharm. Biotechnol. 8, 261–273
(2007).

[CrossRef]
[PubMed]

S. W. Hell, “Far-field optical
nanoscopy,” Science 316, 1153–1158
(2007).

[CrossRef]
[PubMed]

I. Golding, and E. C. Cox, “Physical
nature of bacterial cytoplasm,” Phys. Rev. Lett. 96, 098102
(2006).

[CrossRef]
[PubMed]

M. J. Rust, M. Bates, and X. Zhuang,
“Sub-diffraction-limit imaging by stochastic optical
reconstruction microscopy (STORM),” Nat. Methods 3,
793–796 (2006).

[CrossRef]
[PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason,
“Ultra-high resolution imaging by fluorescence photoactivation
localization microscopy,” Biophys. J. 91, 4258–4272
(2006).

[CrossRef]
[PubMed]

R. Niesner, and K.-H. Gericke,
“Quantitative determination of the single-molecule detection
regime in fluorescence fluctuation microscopy by means of photon counting
histogram analysis,” J. Chem. Phys. 124, 134704
(2006).

[CrossRef]
[PubMed]

M. G. Gustafsson, “Nonlinear
structured-illumination microscopy: wide-field fluorescence imaging with
theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.
102, 13081–13086 (2005).

[CrossRef]
[PubMed]

G. Zumofen, J. Hohlbein, and C. G. Huebner,
“Recurrence and photon statistics in fluorescence fluctuation
spectroscopy,” Phys. Rev. Lett. 93, 260601 (2004).

[CrossRef]

Z. Földes-Papp, “Theory of measuring the
selfsame single fluorescent molecule in solution suited for studying
individual molecular interactions by SPSM-FCS,” Pteridines 13,
73–82 (2002).

G. Seisenberger, M. U. Ried, T. Endres, H. Buning,
M. Hallek, and C. Brauchle, “Real-time single-molecule imaging of
the infection pathway of an adeno-associated virus,” Science 294,
1929–1932 (2001).

[CrossRef]
[PubMed]

Z. Földes-Papp, “Ultrasensitive detection
and identification of fluorescent molecules by FCS: impact for
immunobiology,” Proc. Natl. Acad. Sci. U.S.A. 98,
11509–11514 (2001).

[CrossRef]
[PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W.
Hell, “Fluorescence microscopy with diffraction resolution barrier
broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97,
8206–8210 (2000).

[CrossRef]
[PubMed]

Y. Chen, J. D. Muller, P. T. C. So, and E. Gratton,
“The photon counting histogram in fluorescence fluctuation
spectroscopy,” Biophys. J. 77, 553–567
(1999).

[CrossRef]
[PubMed]

J.-P. Bouchaud, and A. Georges,
“Anomalous diffusion in disordered media: statistical mechanisms,
models and physical applications,” Phys. Rep. 12, 195
(1990).

H. Risken, and H. D. Vollmer, “On the
application of truncated generalized Fokker-Planck equations,” Z.
Physik B 35, 313 (1979).

[CrossRef]

E. W. Montroll, and G. H. Weiss, “Random
walks on lattices,” J. Math. Phys. 6, 364 (1965).

[CrossRef]

G. N. Watson, “The triple
integrals,” Q. J. Math. 10, 266 (1939).

[CrossRef]

G. Polya, “Uber eine Aufgabe der
Wahrscheinlichkeitsrechnung betreffend der Irrfahrt im
Strassennetz,” Math. Ann. 84, 149–160
(1921).

[CrossRef]

Z. Földes-Papp, S.-C. J. Liao, T. You, and B.
Barbieri, “Reducing background contributions in fluorescence
fluctuation time-traces for single-molecule measurements in
solution,” Curr. Pharm. Biotechnol. 10, 532–542
(2009).

[CrossRef]
[PubMed]

Z. Földes-Papp, S.-C. J. Liao, T. You, E.
Terpetschnig, and B. Barbieri, “Confocal fluctuation spectroscopy
and imaging,” Curr. Pharm. Biotechnol.in press.

[CrossRef]
[PubMed]

Y. He, S. Burov, R. Metzler, and E. Barkai,
“Random time-scale invariant diffusion and transport
coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 101,
058101 (2008).

M. J. Rust, M. Bates, and X. Zhuang,
“Sub-diffraction-limit imaging by stochastic optical
reconstruction microscopy (STORM),” Nat. Methods 3,
793–796 (2006).

[CrossRef]
[PubMed]

G. Baumann, R. F. Place, and Z. Földes-Papp,
“Meaningful interpretation of subdiffusive measurements in living
cells (crowded environment) by fluorescence fluctuation
microscopy,” Curr. Pharm. Biotechnol. 11, 527–543
(2010).

[CrossRef]
[PubMed]

A. C. Beveridge, J. H. Jett, R. A. Keller, L. R.
Pratt, and T. M. Yoshida, “Reduction of diffusion broadening in
flow by analysis of time-gated single-molecule data,” Analyst
(Lond.) (2010), doi:10.1039/b926956h.

J.-P. Bouchaud, and A. Georges,
“Anomalous diffusion in disordered media: statistical mechanisms,
models and physical applications,” Phys. Rep. 12, 195
(1990).

G. Seisenberger, M. U. Ried, T. Endres, H. Buning,
M. Hallek, and C. Brauchle, “Real-time single-molecule imaging of
the infection pathway of an adeno-associated virus,” Science 294,
1929–1932 (2001).

[CrossRef]
[PubMed]

G. Seisenberger, M. U. Ried, T. Endres, H. Buning,
M. Hallek, and C. Brauchle, “Real-time single-molecule imaging of
the infection pathway of an adeno-associated virus,” Science 294,
1929–1932 (2001).

[CrossRef]
[PubMed]

Y. He, S. Burov, R. Metzler, and E. Barkai,
“Random time-scale invariant diffusion and transport
coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 101,
058101 (2008).

Y. Chen, J. D. Muller, P. T. C. So, and E. Gratton,
“The photon counting histogram in fluorescence fluctuation
spectroscopy,” Biophys. J. 77, 553–567
(1999).

[CrossRef]
[PubMed]

I. Golding, and E. C. Cox, “Physical
nature of bacterial cytoplasm,” Phys. Rev. Lett. 96, 098102
(2006).

[CrossRef]
[PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W.
Hell, “Fluorescence microscopy with diffraction resolution barrier
broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97,
8206–8210 (2000).

[CrossRef]
[PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W.
Hell, “Fluorescence microscopy with diffraction resolution barrier
broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97,
8206–8210 (2000).

[CrossRef]
[PubMed]

G. Seisenberger, M. U. Ried, T. Endres, H. Buning,
M. Hallek, and C. Brauchle, “Real-time single-molecule imaging of
the infection pathway of an adeno-associated virus,” Science 294,
1929–1932 (2001).

[CrossRef]
[PubMed]

L. Luchowski, Z. Gryczynski, Z. Földes-Papp, A.
Chang, J. Borejdo, P. Sarkar, and I. Gryczynski, “Polarized
fluorescent nanospheres,” Opt. Express 18, 4289–4299
(2010).

[CrossRef]
[PubMed]

G. Baumann, R. F. Place, and Z. Földes-Papp,
“Meaningful interpretation of subdiffusive measurements in living
cells (crowded environment) by fluorescence fluctuation
microscopy,” Curr. Pharm. Biotechnol. 11, 527–543
(2010).

[CrossRef]
[PubMed]

Z. Földes-Papp, S.-C. J. Liao, T. You, and B.
Barbieri, “Reducing background contributions in fluorescence
fluctuation time-traces for single-molecule measurements in
solution,” Curr. Pharm. Biotechnol. 10, 532–542
(2009).

[CrossRef]
[PubMed]

Z. Földes-Papp, “Fluorescence fluctuation
spectroscopic approaches to the study of a single molecule diffusing in
solution and a live cell without systemic drift or convection: a theoretical
study,” Curr. Pharm. Biotechnol. 8, 261–273
(2007).

[CrossRef]
[PubMed]

Z. Földes-Papp, “Theory of measuring the
selfsame single fluorescent molecule in solution suited for studying
individual molecular interactions by SPSM-FCS,” Pteridines 13,
73–82 (2002).

Z. Földes-Papp, “Ultrasensitive detection
and identification of fluorescent molecules by FCS: impact for
immunobiology,” Proc. Natl. Acad. Sci. U.S.A. 98,
11509–11514 (2001).

[CrossRef]
[PubMed]

Z. Földes-Papp, S.-C. J. Liao, T. You, E.
Terpetschnig, and B. Barbieri, “Confocal fluctuation spectroscopy
and imaging,” Curr. Pharm. Biotechnol.in press.

[CrossRef]
[PubMed]

J.-P. Bouchaud, and A. Georges,
“Anomalous diffusion in disordered media: statistical mechanisms,
models and physical applications,” Phys. Rep. 12, 195
(1990).

R. Niesner, and K.-H. Gericke,
“Quantitative determination of the single-molecule detection
regime in fluorescence fluctuation microscopy by means of photon counting
histogram analysis,” J. Chem. Phys. 124, 134704
(2006).

[CrossRef]
[PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason,
“Ultra-high resolution imaging by fluorescence photoactivation
localization microscopy,” Biophys. J. 91, 4258–4272
(2006).

[CrossRef]
[PubMed]

I. Golding, and E. C. Cox, “Physical
nature of bacterial cytoplasm,” Phys. Rev. Lett. 96, 098102
(2006).

[CrossRef]
[PubMed]

I. V. Gopich, “Concentration effects in
“single-molecule” spectroscopy,” J. Phys.
Chem. B 112, 6214–6220 (2008).

[CrossRef]

Y. Chen, J. D. Muller, P. T. C. So, and E. Gratton,
“The photon counting histogram in fluorescence fluctuation
spectroscopy,” Biophys. J. 77, 553–567
(1999).

[CrossRef]
[PubMed]

M. G. Gustafsson, “Nonlinear
structured-illumination microscopy: wide-field fluorescence imaging with
theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.
102, 13081–13086 (2005).

[CrossRef]
[PubMed]

G. Seisenberger, M. U. Ried, T. Endres, H. Buning,
M. Hallek, and C. Brauchle, “Real-time single-molecule imaging of
the infection pathway of an adeno-associated virus,” Science 294,
1929–1932 (2001).

[CrossRef]
[PubMed]

Y. He, S. Burov, R. Metzler, and E. Barkai,
“Random time-scale invariant diffusion and transport
coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 101,
058101 (2008).

S. W. Hell, “Far-field optical
nanoscopy,” Science 316, 1153–1158
(2007).

[CrossRef]
[PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W.
Hell, “Fluorescence microscopy with diffraction resolution barrier
broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97,
8206–8210 (2000).

[CrossRef]
[PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason,
“Ultra-high resolution imaging by fluorescence photoactivation
localization microscopy,” Biophys. J. 91, 4258–4272
(2006).

[CrossRef]
[PubMed]

G. Zumofen, J. Hohlbein, and C. G. Huebner,
“Recurrence and photon statistics in fluorescence fluctuation
spectroscopy,” Phys. Rev. Lett. 93, 260601 (2004).

[CrossRef]

G. Zumofen, J. Hohlbein, and C. G. Huebner,
“Recurrence and photon statistics in fluorescence fluctuation
spectroscopy,” Phys. Rev. Lett. 93, 260601 (2004).

[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W.
Hell, “Fluorescence microscopy with diffraction resolution barrier
broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97,
8206–8210 (2000).

[CrossRef]
[PubMed]

A. C. Beveridge, J. H. Jett, R. A. Keller, L. R.
Pratt, and T. M. Yoshida, “Reduction of diffusion broadening in
flow by analysis of time-gated single-molecule data,” Analyst
(Lond.) (2010), doi:10.1039/b926956h.

A. C. Beveridge, J. H. Jett, R. A. Keller, L. R.
Pratt, and T. M. Yoshida, “Reduction of diffusion broadening in
flow by analysis of time-gated single-molecule data,” Analyst
(Lond.) (2010), doi:10.1039/b926956h.

Y. Meroz, I. M. Sokolov, and J. Klafter,
“Subdiffusion of mixed origins: when ergodicity and nonergodicity
coexist,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 010101
(2010).

[CrossRef]

A. Lubelski, I. M. Sokolov, and J. Klafter,
“Nonergodicity mimics inhomogeneity in single particle
tracking,” Phys. Rev. Lett. 100, 0250602 (2008).

[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W.
Hell, “Fluorescence microscopy with diffraction resolution barrier
broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97,
8206–8210 (2000).

[CrossRef]
[PubMed]

Z. Földes-Papp, S.-C. J. Liao, T. You, and B.
Barbieri, “Reducing background contributions in fluorescence
fluctuation time-traces for single-molecule measurements in
solution,” Curr. Pharm. Biotechnol. 10, 532–542
(2009).

[CrossRef]
[PubMed]

Z. Földes-Papp, S.-C. J. Liao, T. You, E.
Terpetschnig, and B. Barbieri, “Confocal fluctuation spectroscopy
and imaging,” Curr. Pharm. Biotechnol.in press.

[CrossRef]
[PubMed]

A. Lubelski, I. M. Sokolov, and J. Klafter,
“Nonergodicity mimics inhomogeneity in single particle
tracking,” Phys. Rev. Lett. 100, 0250602 (2008).

[CrossRef]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason,
“Ultra-high resolution imaging by fluorescence photoactivation
localization microscopy,” Biophys. J. 91, 4258–4272
(2006).

[CrossRef]
[PubMed]

Y. Meroz, I. M. Sokolov, and J. Klafter,
“Subdiffusion of mixed origins: when ergodicity and nonergodicity
coexist,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 010101
(2010).

[CrossRef]

Y. He, S. Burov, R. Metzler, and E. Barkai,
“Random time-scale invariant diffusion and transport
coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 101,
058101 (2008).

E. W. Montroll, and G. H. Weiss, “Random
walks on lattices,” J. Math. Phys. 6, 364 (1965).

[CrossRef]

Y. Chen, J. D. Muller, P. T. C. So, and E. Gratton,
“The photon counting histogram in fluorescence fluctuation
spectroscopy,” Biophys. J. 77, 553–567
(1999).

[CrossRef]
[PubMed]

R. Niesner, and K.-H. Gericke,
“Quantitative determination of the single-molecule detection
regime in fluorescence fluctuation microscopy by means of photon counting
histogram analysis,” J. Chem. Phys. 124, 134704
(2006).

[CrossRef]
[PubMed]

G. Baumann, R. F. Place, and Z. Földes-Papp,
“Meaningful interpretation of subdiffusive measurements in living
cells (crowded environment) by fluorescence fluctuation
microscopy,” Curr. Pharm. Biotechnol. 11, 527–543
(2010).

[CrossRef]
[PubMed]

G. Polya, “Uber eine Aufgabe der
Wahrscheinlichkeitsrechnung betreffend der Irrfahrt im
Strassennetz,” Math. Ann. 84, 149–160
(1921).

[CrossRef]

A. C. Beveridge, J. H. Jett, R. A. Keller, L. R.
Pratt, and T. M. Yoshida, “Reduction of diffusion broadening in
flow by analysis of time-gated single-molecule data,” Analyst
(Lond.) (2010), doi:10.1039/b926956h.

G. Seisenberger, M. U. Ried, T. Endres, H. Buning,
M. Hallek, and C. Brauchle, “Real-time single-molecule imaging of
the infection pathway of an adeno-associated virus,” Science 294,
1929–1932 (2001).

[CrossRef]
[PubMed]

H. Risken, and H. D. Vollmer, “On the
application of truncated generalized Fokker-Planck equations,” Z.
Physik B 35, 313 (1979).

[CrossRef]

M. J. Rust, M. Bates, and X. Zhuang,
“Sub-diffraction-limit imaging by stochastic optical
reconstruction microscopy (STORM),” Nat. Methods 3,
793–796 (2006).

[CrossRef]
[PubMed]

G. Seisenberger, M. U. Ried, T. Endres, H. Buning,
M. Hallek, and C. Brauchle, “Real-time single-molecule imaging of
the infection pathway of an adeno-associated virus,” Science 294,
1929–1932 (2001).

[CrossRef]
[PubMed]

Y. Chen, J. D. Muller, P. T. C. So, and E. Gratton,
“The photon counting histogram in fluorescence fluctuation
spectroscopy,” Biophys. J. 77, 553–567
(1999).

[CrossRef]
[PubMed]

Y. Meroz, I. M. Sokolov, and J. Klafter,
“Subdiffusion of mixed origins: when ergodicity and nonergodicity
coexist,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 010101
(2010).

[CrossRef]

A. Lubelski, I. M. Sokolov, and J. Klafter,
“Nonergodicity mimics inhomogeneity in single particle
tracking,” Phys. Rev. Lett. 100, 0250602 (2008).

[CrossRef]

J. Szymanski, and M. Weiss, “Elucidating
the origin of anomalous diffusion in crowded fluids,” Phys. Rev.
Lett. 103, 038102 (2009).

[CrossRef]
[PubMed]

Z. Földes-Papp, S.-C. J. Liao, T. You, E.
Terpetschnig, and B. Barbieri, “Confocal fluctuation spectroscopy
and imaging,” Curr. Pharm. Biotechnol.in press.

[CrossRef]
[PubMed]

H. Risken, and H. D. Vollmer, “On the
application of truncated generalized Fokker-Planck equations,” Z.
Physik B 35, 313 (1979).

[CrossRef]

G. N. Watson, “The triple
integrals,” Q. J. Math. 10, 266 (1939).

[CrossRef]

E. W. Montroll, and G. H. Weiss, “Random
walks on lattices,” J. Math. Phys. 6, 364 (1965).

[CrossRef]

J. Szymanski, and M. Weiss, “Elucidating
the origin of anomalous diffusion in crowded fluids,” Phys. Rev.
Lett. 103, 038102 (2009).

[CrossRef]
[PubMed]

A. C. Beveridge, J. H. Jett, R. A. Keller, L. R.
Pratt, and T. M. Yoshida, “Reduction of diffusion broadening in
flow by analysis of time-gated single-molecule data,” Analyst
(Lond.) (2010), doi:10.1039/b926956h.

Z. Földes-Papp, S.-C. J. Liao, T. You, and B.
Barbieri, “Reducing background contributions in fluorescence
fluctuation time-traces for single-molecule measurements in
solution,” Curr. Pharm. Biotechnol. 10, 532–542
(2009).

[CrossRef]
[PubMed]

Z. Földes-Papp, S.-C. J. Liao, T. You, E.
Terpetschnig, and B. Barbieri, “Confocal fluctuation spectroscopy
and imaging,” Curr. Pharm. Biotechnol.in press.

[CrossRef]
[PubMed]

M. J. Rust, M. Bates, and X. Zhuang,
“Sub-diffraction-limit imaging by stochastic optical
reconstruction microscopy (STORM),” Nat. Methods 3,
793–796 (2006).

[CrossRef]
[PubMed]

G. Zumofen, J. Hohlbein, and C. G. Huebner,
“Recurrence and photon statistics in fluorescence fluctuation
spectroscopy,” Phys. Rev. Lett. 93, 260601 (2004).

[CrossRef]

A. C. Beveridge, J. H. Jett, R. A. Keller, L. R.
Pratt, and T. M. Yoshida, “Reduction of diffusion broadening in
flow by analysis of time-gated single-molecule data,” Analyst
(Lond.) (2010), doi:10.1039/b926956h.

Y. Chen, J. D. Muller, P. T. C. So, and E. Gratton,
“The photon counting histogram in fluorescence fluctuation
spectroscopy,” Biophys. J. 77, 553–567
(1999).

[CrossRef]
[PubMed]

S. T. Hess, T. P. K. Girirajan, and M. D. Mason,
“Ultra-high resolution imaging by fluorescence photoactivation
localization microscopy,” Biophys. J. 91, 4258–4272
(2006).

[CrossRef]
[PubMed]

Z. Földes-Papp, S.-C. J. Liao, T. You, and B.
Barbieri, “Reducing background contributions in fluorescence
fluctuation time-traces for single-molecule measurements in
solution,” Curr. Pharm. Biotechnol. 10, 532–542
(2009).

[CrossRef]
[PubMed]

Z. Földes-Papp, S.-C. J. Liao, T. You, E.
Terpetschnig, and B. Barbieri, “Confocal fluctuation spectroscopy
and imaging,” Curr. Pharm. Biotechnol.in press.

[CrossRef]
[PubMed]

G. Baumann, R. F. Place, and Z. Földes-Papp,
“Meaningful interpretation of subdiffusive measurements in living
cells (crowded environment) by fluorescence fluctuation
microscopy,” Curr. Pharm. Biotechnol. 11, 527–543
(2010).

[CrossRef]
[PubMed]

Z. Földes-Papp, “Fluorescence fluctuation
spectroscopic approaches to the study of a single molecule diffusing in
solution and a live cell without systemic drift or convection: a theoretical
study,” Curr. Pharm. Biotechnol. 8, 261–273
(2007).

[CrossRef]
[PubMed]

R. Niesner, and K.-H. Gericke,
“Quantitative determination of the single-molecule detection
regime in fluorescence fluctuation microscopy by means of photon counting
histogram analysis,” J. Chem. Phys. 124, 134704
(2006).

[CrossRef]
[PubMed]

E. W. Montroll, and G. H. Weiss, “Random
walks on lattices,” J. Math. Phys. 6, 364 (1965).

[CrossRef]

I. V. Gopich, “Concentration effects in
“single-molecule” spectroscopy,” J. Phys.
Chem. B 112, 6214–6220 (2008).

[CrossRef]

G. Polya, “Uber eine Aufgabe der
Wahrscheinlichkeitsrechnung betreffend der Irrfahrt im
Strassennetz,” Math. Ann. 84, 149–160
(1921).

[CrossRef]

M. J. Rust, M. Bates, and X. Zhuang,
“Sub-diffraction-limit imaging by stochastic optical
reconstruction microscopy (STORM),” Nat. Methods 3,
793–796 (2006).

[CrossRef]
[PubMed]

J.-P. Bouchaud, and A. Georges,
“Anomalous diffusion in disordered media: statistical mechanisms,
models and physical applications,” Phys. Rep. 12, 195
(1990).

Y. He, S. Burov, R. Metzler, and E. Barkai,
“Random time-scale invariant diffusion and transport
coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 101,
058101 (2008).

Y. Meroz, I. M. Sokolov, and J. Klafter,
“Subdiffusion of mixed origins: when ergodicity and nonergodicity
coexist,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81, 010101
(2010).

[CrossRef]

A. Lubelski, I. M. Sokolov, and J. Klafter,
“Nonergodicity mimics inhomogeneity in single particle
tracking,” Phys. Rev. Lett. 100, 0250602 (2008).

[CrossRef]

J. Szymanski, and M. Weiss, “Elucidating
the origin of anomalous diffusion in crowded fluids,” Phys. Rev.
Lett. 103, 038102 (2009).

[CrossRef]
[PubMed]

I. Golding, and E. C. Cox, “Physical
nature of bacterial cytoplasm,” Phys. Rev. Lett. 96, 098102
(2006).

[CrossRef]
[PubMed]

G. Zumofen, J. Hohlbein, and C. G. Huebner,
“Recurrence and photon statistics in fluorescence fluctuation
spectroscopy,” Phys. Rev. Lett. 93, 260601 (2004).

[CrossRef]

M. G. Gustafsson, “Nonlinear
structured-illumination microscopy: wide-field fluorescence imaging with
theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.
102, 13081–13086 (2005).

[CrossRef]
[PubMed]

Z. Földes-Papp, “Ultrasensitive detection
and identification of fluorescent molecules by FCS: impact for
immunobiology,” Proc. Natl. Acad. Sci. U.S.A. 98,
11509–11514 (2001).

[CrossRef]
[PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W.
Hell, “Fluorescence microscopy with diffraction resolution barrier
broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97,
8206–8210 (2000).

[CrossRef]
[PubMed]

Z. Földes-Papp, “Theory of measuring the
selfsame single fluorescent molecule in solution suited for studying
individual molecular interactions by SPSM-FCS,” Pteridines 13,
73–82 (2002).

G. N. Watson, “The triple
integrals,” Q. J. Math. 10, 266 (1939).

[CrossRef]

S. W. Hell, “Far-field optical
nanoscopy,” Science 316, 1153–1158
(2007).

[CrossRef]
[PubMed]

G. Seisenberger, M. U. Ried, T. Endres, H. Buning,
M. Hallek, and C. Brauchle, “Real-time single-molecule imaging of
the infection pathway of an adeno-associated virus,” Science 294,
1929–1932 (2001).

[CrossRef]
[PubMed]

H. Risken, and H. D. Vollmer, “On the
application of truncated generalized Fokker-Planck equations,” Z.
Physik B 35, 313 (1979).

[CrossRef]

E. W. Montroll, and M. F. Schlesinger, in Studies
in statistical mechanics, edited by J. L. Lebowitz and E. W. Montroll,
(Elsevier, New York, 1984), vol.11.

M. R. Mazo, Brownian motion (Oxford Univ. Press,
Oxford, 2009).

F. Spitzer, Principles of random walk (Springer,
New York, 2001).

B. D. Hughes, Random Walks and Random Environments
(Clarendon Press, Oxford, 1995).

P. Levy, Processus stochastiques et mouvement
Brownien (Gauthier-Villars, Paris, 1965).

K. J. Falconer, Fractal Geometry (Wiley,
Chichester, 2003).

[CrossRef]

B. B. Mandelbrot, The Fractal Geometry of Nature
(Freeman, New York, 1983), pp.237–243 and pp.
326–334.