Abstract

We theoretically predicted the existence of an anomalous optical transmittance dip, which must be observed for a metamaterial structure with two metallic slabs with cut-through slit arrays of a constant period d under a normal incident condition. By changing the relative lateral displacement l between the two slabs, the dip frequency varies across that of a so-called Rayleigh-Wood’s (RW) anomaly frequency. The mechanism of this anomaly is quite different from that of the RW anomaly and interpreted in terms of the interference between the propagating and evanescent waves. For the present double-layered system, furthermore, it is suggested that the RW anomaly vanishes for l = 0 and d/2. In experiments in the terahertz region, we observe that the fundamental features agree with these theoretical predictions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  2. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
    [CrossRef]
  3. L. Rayleigh, “III. Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14, 60–65 (1907).
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  5. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  6. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. 67(8), 085415 (2003).
    [CrossRef]
  7. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  8. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [CrossRef]
  9. K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
    [CrossRef]
  10. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
    [CrossRef] [PubMed]
  11. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
    [CrossRef] [PubMed]
  12. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
    [CrossRef] [PubMed]
  13. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965).
    [CrossRef]
  14. F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
    [CrossRef]
  15. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
    [CrossRef] [PubMed]
  16. J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004).
    [CrossRef] [PubMed]
  17. F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [CrossRef]
  18. The reverse cases that the dip frequency is higher than the RW anomaly one for l < d/4 and lower for l > d/4 may occur for s > d/2.
  19. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [CrossRef]
  20. C. Cheng, J. Chen, D. Shi, Q. Wu, F. Ren, J. Xu, Y. Fan, J. Ding, and H. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
    [CrossRef]
  21. M. Hangyo, K. Akiyama, K. Takano, F. Miyamaru, K. Shibuya, Y. Abe, Y. Tokuda, and H. Miyazaki, “Artificial dielectric metamaterials made of metals and their terahertz-wave propagation properties,” Proc. SPIE 7935, 53 (2009).
  22. K. Akiyama, K. Shibuya, K. Takano, Y. Abe, Y. Tokuda, and M. Hangyo, “Variable effective refractive index of a gap layer between two cut-through metal slit array metamaterial slabs,” in Proceedings of the 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, (London, UK, 2009), pp. 436–437.

2010 (1)

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

2009 (1)

M. Hangyo, K. Akiyama, K. Takano, F. Miyamaru, K. Shibuya, Y. Abe, Y. Tokuda, and H. Miyazaki, “Artificial dielectric metamaterials made of metals and their terahertz-wave propagation properties,” Proc. SPIE 7935, 53 (2009).

2008 (2)

C. Cheng, J. Chen, D. Shi, Q. Wu, F. Ren, J. Xu, Y. Fan, J. Ding, and H. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

2007 (2)

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[CrossRef] [PubMed]

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

2006 (1)

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

2005 (3)

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[CrossRef]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2003 (1)

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. 67(8), 085415 (2003).
[CrossRef]

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1965 (1)

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

1935 (1)

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

1907 (1)

L. Rayleigh, “III. Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14, 60–65 (1907).

1902 (1)

R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Abe, Y.

M. Hangyo, K. Akiyama, K. Takano, F. Miyamaru, K. Shibuya, Y. Abe, Y. Tokuda, and H. Miyazaki, “Artificial dielectric metamaterials made of metals and their terahertz-wave propagation properties,” Proc. SPIE 7935, 53 (2009).

Akiyama, K.

M. Hangyo, K. Akiyama, K. Takano, F. Miyamaru, K. Shibuya, Y. Abe, Y. Tokuda, and H. Miyazaki, “Artificial dielectric metamaterials made of metals and their terahertz-wave propagation properties,” Proc. SPIE 7935, 53 (2009).

Bliokh, K. Y.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

Bliokh, Y. P.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

Bravo-Abad, J.

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004).
[CrossRef] [PubMed]

Catrysse, P. B.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

Chen, J.

C. Cheng, J. Chen, D. Shi, Q. Wu, F. Ren, J. Xu, Y. Fan, J. Ding, and H. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

Cheng, C.

C. Cheng, J. Chen, D. Shi, Q. Wu, F. Ren, J. Xu, Y. Fan, J. Ding, and H. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

Ding, J.

C. Cheng, J. Chen, D. Shi, Q. Wu, F. Ren, J. Xu, Y. Fan, J. Ding, and H. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

Ebbesen, T. W.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Fan, S.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

Fan, Y.

C. Cheng, J. Chen, D. Shi, Q. Wu, F. Ren, J. Xu, Y. Fan, J. Ding, and H. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Freilikher, V.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Hangyo, M.

M. Hangyo, K. Akiyama, K. Takano, F. Miyamaru, K. Shibuya, Y. Abe, Y. Tokuda, and H. Miyazaki, “Artificial dielectric metamaterials made of metals and their terahertz-wave propagation properties,” Proc. SPIE 7935, 53 (2009).

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[CrossRef]

Hessel, A.

Jeoung, S. C.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[CrossRef] [PubMed]

Kang, D. H.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[CrossRef] [PubMed]

Khim, K. S.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[CrossRef] [PubMed]

Kim, D. S.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[CrossRef] [PubMed]

Kuipers, L.

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

Lee, J. W.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Martín-Moreno, L.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Miyamaru, F.

M. Hangyo, K. Akiyama, K. Takano, F. Miyamaru, K. Shibuya, Y. Abe, Y. Tokuda, and H. Miyazaki, “Artificial dielectric metamaterials made of metals and their terahertz-wave propagation properties,” Proc. SPIE 7935, 53 (2009).

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[CrossRef]

Miyazaki, H.

M. Hangyo, K. Akiyama, K. Takano, F. Miyamaru, K. Shibuya, Y. Abe, Y. Tokuda, and H. Miyazaki, “Artificial dielectric metamaterials made of metals and their terahertz-wave propagation properties,” Proc. SPIE 7935, 53 (2009).

Moreno, E.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

Nori, F.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

Oliner, A. A.

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Porto, J. A.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Qiu, M.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Rayleigh, L.

L. Rayleigh, “III. Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14, 60–65 (1907).

Ren, F.

C. Cheng, J. Chen, D. Shi, Q. Wu, F. Ren, J. Xu, Y. Fan, J. Ding, and H. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

Ruan, Z.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Sarrazin, M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. 67(8), 085415 (2003).
[CrossRef]

Savel’ev, S.

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

Seo, M. A.

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[CrossRef] [PubMed]

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

Shi, D.

C. Cheng, J. Chen, D. Shi, Q. Wu, F. Ren, J. Xu, Y. Fan, J. Ding, and H. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

Shibuya, K.

M. Hangyo, K. Akiyama, K. Takano, F. Miyamaru, K. Shibuya, Y. Abe, Y. Tokuda, and H. Miyazaki, “Artificial dielectric metamaterials made of metals and their terahertz-wave propagation properties,” Proc. SPIE 7935, 53 (2009).

Takano, K.

M. Hangyo, K. Akiyama, K. Takano, F. Miyamaru, K. Shibuya, Y. Abe, Y. Tokuda, and H. Miyazaki, “Artificial dielectric metamaterials made of metals and their terahertz-wave propagation properties,” Proc. SPIE 7935, 53 (2009).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tokuda, Y.

M. Hangyo, K. Akiyama, K. Takano, F. Miyamaru, K. Shibuya, Y. Abe, Y. Tokuda, and H. Miyazaki, “Artificial dielectric metamaterials made of metals and their terahertz-wave propagation properties,” Proc. SPIE 7935, 53 (2009).

Vigneron, J.-P.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. 67(8), 085415 (2003).
[CrossRef]

Vigoureux, J.-M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. 67(8), 085415 (2003).
[CrossRef]

Wang, H.

C. Cheng, J. Chen, D. Shi, Q. Wu, F. Ren, J. Xu, Y. Fan, J. Ding, and H. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wood, R. W.

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Wu, Q.

C. Cheng, J. Chen, D. Shi, Q. Wu, F. Ren, J. Xu, Y. Fan, J. Ding, and H. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

Xu, J.

C. Cheng, J. Chen, D. Shi, Q. Wu, F. Ren, J. Xu, Y. Fan, J. Ding, and H. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

Appl. Opt. (1)

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Philos. Mag. (2)

R. W. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

L. Rayleigh, “III. Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philos. Mag. 14, 60–65 (1907).

Phys. Rev. (3)

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[CrossRef]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. 67(8), 085415 (2003).
[CrossRef]

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (2)

C. Cheng, J. Chen, D. Shi, Q. Wu, F. Ren, J. Xu, Y. Fan, J. Ding, and H. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78(7), 075406 (2008).
[CrossRef]

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B 71(16), 165408 (2005).
[CrossRef]

Phys. Rev. Lett. (6)

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Resonant transmission of light through finite chains of subwavelength holes in a metallic film,” Phys. Rev. Lett. 93(22), 227401 (2004).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[CrossRef] [PubMed]

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99(13), 137401 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Hangyo, K. Akiyama, K. Takano, F. Miyamaru, K. Shibuya, Y. Abe, Y. Tokuda, and H. Miyazaki, “Artificial dielectric metamaterials made of metals and their terahertz-wave propagation properties,” Proc. SPIE 7935, 53 (2009).

Rev. Mod. Phys. (3)

F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[CrossRef]

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, “Colloquium: Unusual resonators: Plasmonics metamaterials, and random media,” Rev. Mod. Phys. 80(4), 1201–1213 (2008).
[CrossRef]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Other (2)

The reverse cases that the dip frequency is higher than the RW anomaly one for l < d/4 and lower for l > d/4 may occur for s > d/2.

K. Akiyama, K. Shibuya, K. Takano, Y. Abe, Y. Tokuda, and M. Hangyo, “Variable effective refractive index of a gap layer between two cut-through metal slit array metamaterial slabs,” in Proceedings of the 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, (London, UK, 2009), pp. 436–437.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic illustration of the two metallic slabs with the cut-through slit arrays. The structures of the upper and lower slabs are identical with the same geometrical parameters of the slit width a, the slit periodicity d, and the height h. The lateral displacement and the gap length between the slabs are represented by l and s, respectively. (b) A cross-sectional view of the configuration for simulations, where h = for elimination of the Fabry-Pérot interferences by the metallic slit layers as dielectric materials.

Fig. 2
Fig. 2

(a) Transmission spectra calculated for the various lateral displacement l values, and (b) electric field distributions for the Rayleigh-Wood’s anomaly with l = d/4 and (c) for the new anomaly with l = 0. The slit width a and the gap length s are fixed at d/6 and d/4, respectively.

Fig. 3
Fig. 3

Transmission dip frequencies as a function of the lateral displacement l for the various gap lengths s. All lines cross the RW anomaly frequency of c/d at l = d/4.

Fig. 4
Fig. 4

Amplitudes and phases of G inter for the propagating (p = 0) and evanescent (p≠ 0) waves as a function of the frequency for the various l values with s = d/4.

Fig. 5
Fig. 5

(a) Transmission spectra measured by the terahertz time domain spectroscopy for the double-layered cut-through slit arrays of a = 160 μm, d = 600 μm, and h = 1300 μm. The gap length s is fixed at 80 μm whereas the lateral displacement l is from 0 to 300 μm ( = d/2). The black circles are the transmission spectra of the single cut-through slits. (b) Transmission spectra in which the Fabry-Pérot interference and reflection effect at the boundary between air and the double-layered cut-through slits are removed by the procedure described in the text.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

m ' ( δ m m ' G m m ' intra ) A m ' + n ' G m n ' inter B n ' = 1 ,
m ' G n m ' inter A m ' + n ' ( δ n n ' G n n ' intra ) B n ' = 0 ,
G m m ' intra = p 1 Z p w p + w p 1 w p w p 1 < m | p > < p | m ' > ,
G m n ' inter = p 1 Z p 1 w p w p 1 < m | p > < p | n ' > ,
t = G inter ( 1 G intra ) 2 ( G inter ) 2 ,

Metrics