Abstract

The generation of a record peak-power of 15TW (45J, 3ps) in a single CO2 laser beam is reported. Using a master oscillator–power amplifier laser system, it is shown that up to 100J of energy can be extracted in a train of 3ps laser pulses separated by 18ps, a characteristic time of the CO2 molecule. The bandwidth required for amplifying the short injected laser pulse train in a 2.5atm final CO2 amplifier is provided by field broadening of the medium at intensities of up to 140GW/cm2. The measured saturation energy for 3ps pulses is 120mJ/cm2 which confirms that energy is simultaneously extracted from six rovibrational lines.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, and K. Krushelnick, “Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate,” Opt. Express 16(3), 2109–2114 (2008).
    [CrossRef] [PubMed]
  2. I. Pogorelsky, P. Shkolnikov, M. Chen, A. Pukhov, V. Yakimenko, P. McKenna, D. Carroll, D. Neely, Z. Najmudin, L. Willingdale, D. Stolyarov, E. Stolyarova, and G. Flynn, “Proton and ion beams generated with picosecond CO2 laser pulses,” in Proceedings of Advanced Accelerator Concepts: 13th Workshop, W. Leemans, ed. (2009), pp. 532–537.
  3. S. Ya. Tochitsky, C. Filip, R. Narang, C. E. Clayton, K. A. Marsh, and C. Joshi, “Efficient shortening of self-chirped picosecond pulses in a high-power CO(2) amplifier,” Opt. Lett. 26(11), 813–815 (2001).
    [CrossRef]
  4. S. Ya. Tochitsky, R. Narang, C. Filip, C. E. Clayton, K. A. Marsh, and C. Joshi, “Generation of 160-ps terawatt-power CO(2) laser pulses,” Opt. Lett. 24(23), 1717–1719 (1999).
    [CrossRef]
  5. P. B. Corkum, “Amplification of picosecond 10μm pulses in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21(3), 216–232 (1985).
    [CrossRef]
  6. R. K. Brimacombe and J. Reid, “Accurate measurements of pressure-broadened linewidths in a transversely excited CO2 discharge,” IEEE J. Quantum Electron. 19(11), 1668–1673 (1983).
    [CrossRef]
  7. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
    [CrossRef]
  8. R. K. Brimacombe and J. Reid, “Influence of the dynamic Stark effect on the small-signal gain of optically pumped 4.3- μm CO2 lasers,” J. Appl. Phys. 58(3), 1141–1145 (1985).
    [CrossRef]
  9. R. K. Brimacombe and J. Reid, “Measurements of anomalous gain coefficients in transversely excited CO2 lasers,” IEEE J. Quantum Electron. 19(11), 1674–1679 (1983).
    [CrossRef]
  10. V. T. Platonenko and V. D. Taranukhin, “Coherent amplification of light pulses in media with a discrete spectrum,” Sov. J. Quantum Electron. 13(11), 1459–1466 (1983).
    [CrossRef]
  11. A. E. Siegman, Lasers (University of Science Books, Mill Valley, 1986).
  12. A. J. Alcock and P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
    [CrossRef]
  13. C. V. Filip, R. Narang, S. Y. Tochitsky, C. E. Clayton, and C. Joshi, “Optical Kerr switching technique for the production of a picosecond, multiwavelength CO2 laser pulse,” J. Appl. Opt. 41(18), 3743–3747 (2002).
    [CrossRef]
  14. J.-M. Liu, Photonic Devices (Cambridge Univ. Press, 2005).
  15. R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(Spec.), 108–118 (2006).
    [CrossRef]
  16. R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981).
    [CrossRef]
  17. B. F. Kuntsevich, V. O. Petukhov, S. Y. Tochitskiĭ, and V. V. Churakov, “Field mechanism for simultaneous oscillation on several transitions in TEA CO2 lasers,” Quantum Electron. 23(6), 481–487 (1993).
    [CrossRef]
  18. S. Ya. Tochitsky, et al., “Present status and future prospects of high-power CO2 laser research,” in Proceedings of the International Conference LASERS 2000, V. J. Corcoran and T. A. Corcoran, eds. (2001), pp. 417–427.
  19. L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
    [CrossRef]
  20. D. Fröhlich, R. Wille, W. Schlapp, and G. Weimann, “Two-photon magnetoabsorption in multiple quantum wells,” Phys. Rev. Lett. 61(16), 1878–1881 (1988).
    [CrossRef] [PubMed]
  21. P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3-14 microm in dielectrics and semiconductors,” Opt. Lett. 10(12), 624–626 (1985).
    [CrossRef] [PubMed]
  22. D. Haberberger, et al., “Proton acceleration in CO2 laser plasma interactions at critical density,” in Proceedings of Partical Accelerator Conference, Vancouver (2009).

2008

2006

R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(Spec.), 108–118 (2006).
[CrossRef]

2002

C. V. Filip, R. Narang, S. Y. Tochitsky, C. E. Clayton, and C. Joshi, “Optical Kerr switching technique for the production of a picosecond, multiwavelength CO2 laser pulse,” J. Appl. Opt. 41(18), 3743–3747 (2002).
[CrossRef]

2001

1999

1993

B. F. Kuntsevich, V. O. Petukhov, S. Y. Tochitskiĭ, and V. V. Churakov, “Field mechanism for simultaneous oscillation on several transitions in TEA CO2 lasers,” Quantum Electron. 23(6), 481–487 (1993).
[CrossRef]

1988

D. Fröhlich, R. Wille, W. Schlapp, and G. Weimann, “Two-photon magnetoabsorption in multiple quantum wells,” Phys. Rev. Lett. 61(16), 1878–1881 (1988).
[CrossRef] [PubMed]

1985

P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3-14 microm in dielectrics and semiconductors,” Opt. Lett. 10(12), 624–626 (1985).
[CrossRef] [PubMed]

P. B. Corkum, “Amplification of picosecond 10μm pulses in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21(3), 216–232 (1985).
[CrossRef]

R. K. Brimacombe and J. Reid, “Influence of the dynamic Stark effect on the small-signal gain of optically pumped 4.3- μm CO2 lasers,” J. Appl. Phys. 58(3), 1141–1145 (1985).
[CrossRef]

1983

R. K. Brimacombe and J. Reid, “Measurements of anomalous gain coefficients in transversely excited CO2 lasers,” IEEE J. Quantum Electron. 19(11), 1674–1679 (1983).
[CrossRef]

V. T. Platonenko and V. D. Taranukhin, “Coherent amplification of light pulses in media with a discrete spectrum,” Sov. J. Quantum Electron. 13(11), 1459–1466 (1983).
[CrossRef]

R. K. Brimacombe and J. Reid, “Accurate measurements of pressure-broadened linewidths in a transversely excited CO2 discharge,” IEEE J. Quantum Electron. 19(11), 1668–1673 (1983).
[CrossRef]

1981

R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981).
[CrossRef]

1979

A. J. Alcock and P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
[CrossRef]

1963

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[CrossRef]

1955

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[CrossRef]

Alcock, A. J.

A. J. Alcock and P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
[CrossRef]

Alfano, R. R.

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[CrossRef]

Brimacombe, R. K.

R. K. Brimacombe and J. Reid, “Influence of the dynamic Stark effect on the small-signal gain of optically pumped 4.3- μm CO2 lasers,” J. Appl. Phys. 58(3), 1141–1145 (1985).
[CrossRef]

R. K. Brimacombe and J. Reid, “Accurate measurements of pressure-broadened linewidths in a transversely excited CO2 discharge,” IEEE J. Quantum Electron. 19(11), 1668–1673 (1983).
[CrossRef]

R. K. Brimacombe and J. Reid, “Measurements of anomalous gain coefficients in transversely excited CO2 lasers,” IEEE J. Quantum Electron. 19(11), 1674–1679 (1983).
[CrossRef]

Carlson, R. L.

R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981).
[CrossRef]

Carpenter, J.

R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981).
[CrossRef]

Casperson, D.

R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981).
[CrossRef]

Cheriaux, G.

Churakov, V. V.

B. F. Kuntsevich, V. O. Petukhov, S. Y. Tochitskiĭ, and V. V. Churakov, “Field mechanism for simultaneous oscillation on several transitions in TEA CO2 lasers,” Quantum Electron. 23(6), 481–487 (1993).
[CrossRef]

Chvykov, V.

Clayton, C. E.

Corkum, P. B.

P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3-14 microm in dielectrics and semiconductors,” Opt. Lett. 10(12), 624–626 (1985).
[CrossRef] [PubMed]

P. B. Corkum, “Amplification of picosecond 10μm pulses in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21(3), 216–232 (1985).
[CrossRef]

A. J. Alcock and P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
[CrossRef]

Filip, C.

Filip, C. V.

C. V. Filip, R. Narang, S. Y. Tochitsky, C. E. Clayton, and C. Joshi, “Optical Kerr switching technique for the production of a picosecond, multiwavelength CO2 laser pulse,” J. Appl. Opt. 41(18), 3743–3747 (2002).
[CrossRef]

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[CrossRef]

Fröhlich, D.

D. Fröhlich, R. Wille, W. Schlapp, and G. Weimann, “Two-photon magnetoabsorption in multiple quantum wells,” Phys. Rev. Lett. 61(16), 1878–1881 (1988).
[CrossRef] [PubMed]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(Spec.), 108–118 (2006).
[CrossRef]

Gibson, R.

R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981).
[CrossRef]

Godwin, R.

R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981).
[CrossRef]

Haglund, R.

R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981).
[CrossRef]

Hanlon, J.

R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981).
[CrossRef]

Ho, P. P.

Jolly, E.

R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981).
[CrossRef]

Joshi, C.

Kalinchenko, G.

Krushelnick, K.

Kuntsevich, B. F.

B. F. Kuntsevich, V. O. Petukhov, S. Y. Tochitskiĭ, and V. V. Churakov, “Field mechanism for simultaneous oscillation on several transitions in TEA CO2 lasers,” Quantum Electron. 23(6), 481–487 (1993).
[CrossRef]

Kuroda, H.

R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(Spec.), 108–118 (2006).
[CrossRef]

Maksimchuk, A.

Manassah, J. T.

Marsh, K. A.

Matsuoka, T.

Mourou, G.

Narang, R.

Nees, J.

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[CrossRef]

Petukhov, V. O.

B. F. Kuntsevich, V. O. Petukhov, S. Y. Tochitskiĭ, and V. V. Churakov, “Field mechanism for simultaneous oscillation on several transitions in TEA CO2 lasers,” Quantum Electron. 23(6), 481–487 (1993).
[CrossRef]

Planchon, T.

Platonenko, V. T.

V. T. Platonenko and V. D. Taranukhin, “Coherent amplification of light pulses in media with a discrete spectrum,” Sov. J. Quantum Electron. 13(11), 1459–1466 (1983).
[CrossRef]

Reid, J.

R. K. Brimacombe and J. Reid, “Influence of the dynamic Stark effect on the small-signal gain of optically pumped 4.3- μm CO2 lasers,” J. Appl. Phys. 58(3), 1141–1145 (1985).
[CrossRef]

R. K. Brimacombe and J. Reid, “Accurate measurements of pressure-broadened linewidths in a transversely excited CO2 discharge,” IEEE J. Quantum Electron. 19(11), 1668–1673 (1983).
[CrossRef]

R. K. Brimacombe and J. Reid, “Measurements of anomalous gain coefficients in transversely excited CO2 lasers,” IEEE J. Quantum Electron. 19(11), 1674–1679 (1983).
[CrossRef]

Rousseau, P.

Ryasnyanskii, A. I.

R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(Spec.), 108–118 (2006).
[CrossRef]

Schlapp, W.

D. Fröhlich, R. Wille, W. Schlapp, and G. Weimann, “Two-photon magnetoabsorption in multiple quantum wells,” Phys. Rev. Lett. 61(16), 1878–1881 (1988).
[CrossRef] [PubMed]

Stratton, T.

R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981).
[CrossRef]

Taranukhin, V. D.

V. T. Platonenko and V. D. Taranukhin, “Coherent amplification of light pulses in media with a discrete spectrum,” Sov. J. Quantum Electron. 13(11), 1459–1466 (1983).
[CrossRef]

Tochitskii, S. Y.

B. F. Kuntsevich, V. O. Petukhov, S. Y. Tochitskiĭ, and V. V. Churakov, “Field mechanism for simultaneous oscillation on several transitions in TEA CO2 lasers,” Quantum Electron. 23(6), 481–487 (1993).
[CrossRef]

Tochitsky, S. Y.

C. V. Filip, R. Narang, S. Y. Tochitsky, C. E. Clayton, and C. Joshi, “Optical Kerr switching technique for the production of a picosecond, multiwavelength CO2 laser pulse,” J. Appl. Opt. 41(18), 3743–3747 (2002).
[CrossRef]

Tochitsky, S. Ya.

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[CrossRef]

Weimann, G.

D. Fröhlich, R. Wille, W. Schlapp, and G. Weimann, “Two-photon magnetoabsorption in multiple quantum wells,” Phys. Rev. Lett. 61(16), 1878–1881 (1988).
[CrossRef] [PubMed]

Wille, R.

D. Fröhlich, R. Wille, W. Schlapp, and G. Weimann, “Two-photon magnetoabsorption in multiple quantum wells,” Phys. Rev. Lett. 61(16), 1878–1881 (1988).
[CrossRef] [PubMed]

Yanovsky, V.

Can. J. Phys.

A. J. Alcock and P. B. Corkum, “Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors,” Can. J. Phys. 57, 1280–1290 (1979).
[CrossRef]

IEEE J. Quantum Electron.

P. B. Corkum, “Amplification of picosecond 10μm pulses in multiatmosphere CO2 lasers,” IEEE J. Quantum Electron. 21(3), 216–232 (1985).
[CrossRef]

R. K. Brimacombe and J. Reid, “Accurate measurements of pressure-broadened linewidths in a transversely excited CO2 discharge,” IEEE J. Quantum Electron. 19(11), 1668–1673 (1983).
[CrossRef]

R. K. Brimacombe and J. Reid, “Measurements of anomalous gain coefficients in transversely excited CO2 lasers,” IEEE J. Quantum Electron. 19(11), 1674–1679 (1983).
[CrossRef]

R. L. Carlson, J. Carpenter, D. Casperson, R. Gibson, R. Godwin, R. Haglund, J. Hanlon, E. Jolly, and T. Stratton, “Helios: a 15 TW carbon dioxide laser-fusion facility,” IEEE J. Quantum Electron. 17(9), 1662–1678 (1981).
[CrossRef]

J. Appl. Opt.

C. V. Filip, R. Narang, S. Y. Tochitsky, C. E. Clayton, and C. Joshi, “Optical Kerr switching technique for the production of a picosecond, multiwavelength CO2 laser pulse,” J. Appl. Opt. 41(18), 3743–3747 (2002).
[CrossRef]

J. Appl. Phys.

R. K. Brimacombe and J. Reid, “Influence of the dynamic Stark effect on the small-signal gain of optically pumped 4.3- μm CO2 lasers,” J. Appl. Phys. 58(3), 1141–1145 (1985).
[CrossRef]

L. M. Frantz and J. S. Nodvik, “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

R. A. Ganeev, A. I. Ryasnyanskiĭ, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100(Spec.), 108–118 (2006).
[CrossRef]

Phys. Rev.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100(2), 703–722 (1955).
[CrossRef]

Phys. Rev. Lett.

D. Fröhlich, R. Wille, W. Schlapp, and G. Weimann, “Two-photon magnetoabsorption in multiple quantum wells,” Phys. Rev. Lett. 61(16), 1878–1881 (1988).
[CrossRef] [PubMed]

Quantum Electron.

B. F. Kuntsevich, V. O. Petukhov, S. Y. Tochitskiĭ, and V. V. Churakov, “Field mechanism for simultaneous oscillation on several transitions in TEA CO2 lasers,” Quantum Electron. 23(6), 481–487 (1993).
[CrossRef]

Sov. J. Quantum Electron.

V. T. Platonenko and V. D. Taranukhin, “Coherent amplification of light pulses in media with a discrete spectrum,” Sov. J. Quantum Electron. 13(11), 1459–1466 (1983).
[CrossRef]

Other

A. E. Siegman, Lasers (University of Science Books, Mill Valley, 1986).

J.-M. Liu, Photonic Devices (Cambridge Univ. Press, 2005).

S. Ya. Tochitsky, et al., “Present status and future prospects of high-power CO2 laser research,” in Proceedings of the International Conference LASERS 2000, V. J. Corcoran and T. A. Corcoran, eds. (2001), pp. 417–427.

I. Pogorelsky, P. Shkolnikov, M. Chen, A. Pukhov, V. Yakimenko, P. McKenna, D. Carroll, D. Neely, Z. Najmudin, L. Willingdale, D. Stolyarov, E. Stolyarova, and G. Flynn, “Proton and ion beams generated with picosecond CO2 laser pulses,” in Proceedings of Advanced Accelerator Concepts: 13th Workshop, W. Leemans, ed. (2009), pp. 532–537.

D. Haberberger, et al., “Proton acceleration in CO2 laser plasma interactions at critical density,” in Proceedings of Partical Accelerator Conference, Vancouver (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

CO2 gain spectrum vs. wavelength with a gas mixture of 1:1:14 (CO2:N2:He) at a pressure of 1atm (a), 10atm (b), and 25atm (c)

Fig. 2
Fig. 2

(a) CO2 gain spectrum at 1atm (red), 3ps input pulse spectrum (green), and the pulse spectrum filtered by the CO2 gain spectrum obtained via multiplication of the red and green traces (blue). (b) Fourier transform of the pulse spectrum filtered by the CO2 gain medium.

Fig. 3
Fig. 3

Pulse train evolution shown through consecutive plots of intensity vs. time as the pulses travel through a CO2 amplifier at a pressure of 3atm with a small signal gain of go = 3%/cm. (a), (b), (c), and (d) are taken at goL products of 6.4, 9.6, 12.8, and 25.6 respectively.

Fig. 4
Fig. 4

The Neptune CO2 master-oscillator power-amplifier laser chain

Fig. 5
Fig. 5

Temporal profile of the CO2 pulses after amplification in the regenerative amplifier as measured by the Hammamatsu (C5689) streak camera.

Fig. 6
Fig. 6

Temporal profiles of the CO2 pulses after amplification in the first pass of the final amplifier (a), and all three passes of the final amplifier (b) as measured by the Hadland Photonics (Imacon 500) streak camera.

Fig. 7
Fig. 7

Output energy vs. input energy from the first pass of the final amplifier (data points), compared to theoretical predictions of the Frantz Nodvik equation for a saturation energy of 20mJ/cm2 (blue), 100mJ/cm2 (green), and 150mJ/cm2 (red)

Metrics