Abstract

A short cavity Er3+-doped distributed-Bragg-reflector (DBR) fiber laser with a low polarization beat frequency has been demonstrated for bending measurement. The polarization beat frequency of the DBR laser is extremely sensitive to bending and can measure curvature changes as small as 1.8 × 10−2 m−1. Excellent agreement between experimental and theoretical results was obtained for bending curvatures from 0 m−1 to 58.8 m−1 with corresponding changes in beat frequency from 18.6 MHz to 253 MHz. The sensor is insensitive to temperature fluctuations and has a temperature coefficient of the beat frequency of −25.4 kHz/°C, making the temperature compensation unnecessary in most practical applications. The very low beat frequency of the DBR fiber laser makes frequency down-conversion unnecessary. This can greatly simplify the demodulation scheme and thus, allow the realization of low-cost but highly sensitive optical bending sensor systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. N. Li, D. S. Li, and G. B. Song, “Recent applications offiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
    [CrossRef]
  2. T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation,” Eng. Structures 28(5), 648–659 (2006).
    [CrossRef]
  3. B. Culshaw and A. Kersey, “Fiber-Optic Sensing: A Historical Perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
    [CrossRef]
  4. Y. Liu, J. A. R. Williams, and I. Bennion, “Optical Bend sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett. 12(5), 531–533 (2000).
    [CrossRef]
  5. C. Y. Lin, L. A. Wang, and G. W. Chem, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19(8), 1159–1168 (2001).
    [CrossRef]
  6. M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
    [CrossRef]
  7. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
    [CrossRef] [PubMed]
  8. D. Donlagic and B. Culshaw, “Propagation of the Fundamental Mode in Curved Graded Index Multimode Fiber and Its Application in Sensor Systems,” J. Lightwave Technol. 18(3), 334–342 (2000).
    [CrossRef]
  9. K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans. Electron. E 83-C, 309–314 (2000).
  10. B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
    [CrossRef]
  11. Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
    [CrossRef]
  12. Y. Zhang, B. O. Guan, and H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express 17(12), 10050–10055 (2009).
    [CrossRef] [PubMed]
  13. Z. H. Fu, Y. X. Wang, D. Z. Yang, and Y. H. Shen, “Single-frequency linear cavity erbium-doped fiber laser for fiber-optic sensing applications,” Laser Phys. Lett. 6(8), 594–597 (2009).
    [CrossRef]
  14. W. S. Liu, M. Jiang, D. Chen, and S. He, “Dual-Wavelength Single-Longitudinal-Mode Polarization-Maintaining Fiber Laser and Its Application in Microwave Generation,” J. Lightwave Technol. 27(20), 4455–4459 (2009).
    [CrossRef]
  15. H. Zhang, B. Liu, J. H. Luo, J. Sun, X. R. Ma, C. L. Jia, and S. X. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
    [CrossRef]
  16. A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt. 19(15), 2606–2611 (1980).
    [CrossRef] [PubMed]
  17. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
    [CrossRef] [PubMed]
  18. S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
    [CrossRef]
  19. S. C. Rashleigh and M. J. Marrone, “Temperature dependence of stress birefringence in an elliptically clad fiber,” Opt. Lett. 8(2), 127–129 (1983).
    [CrossRef] [PubMed]

2009

Z. H. Fu, Y. X. Wang, D. Z. Yang, and Y. H. Shen, “Single-frequency linear cavity erbium-doped fiber laser for fiber-optic sensing applications,” Laser Phys. Lett. 6(8), 594–597 (2009).
[CrossRef]

H. Zhang, B. Liu, J. H. Luo, J. Sun, X. R. Ma, C. L. Jia, and S. X. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Y. Zhang, B. O. Guan, and H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express 17(12), 10050–10055 (2009).
[CrossRef] [PubMed]

W. S. Liu, M. Jiang, D. Chen, and S. He, “Dual-Wavelength Single-Longitudinal-Mode Polarization-Maintaining Fiber Laser and Its Application in Microwave Generation,” J. Lightwave Technol. 27(20), 4455–4459 (2009).
[CrossRef]

2008

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[CrossRef]

B. Culshaw and A. Kersey, “Fiber-Optic Sensing: A Historical Perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
[CrossRef]

2006

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation,” Eng. Structures 28(5), 648–659 (2006).
[CrossRef]

2005

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

2004

H. N. Li, D. S. Li, and G. B. Song, “Recent applications offiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
[CrossRef]

2003

2001

2000

D. Donlagic and B. Culshaw, “Propagation of the Fundamental Mode in Curved Graded Index Multimode Fiber and Its Application in Sensor Systems,” J. Lightwave Technol. 18(3), 334–342 (2000).
[CrossRef]

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Y. Liu, J. A. R. Williams, and I. Bennion, “Optical Bend sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett. 12(5), 531–533 (2000).
[CrossRef]

K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans. Electron. E 83-C, 309–314 (2000).

1983

S. C. Rashleigh, “Origins and control of polarization effects in single-mode fibers,” J. Lightwave Technol. 1(2), 312–331 (1983).
[CrossRef]

S. C. Rashleigh and M. J. Marrone, “Temperature dependence of stress birefringence in an elliptically clad fiber,” Opt. Lett. 8(2), 127–129 (1983).
[CrossRef] [PubMed]

1980

Barton, J. S.

Bennion, I.

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[CrossRef] [PubMed]

Y. Liu, J. A. R. Williams, and I. Bennion, “Optical Bend sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett. 12(5), 531–533 (2000).
[CrossRef]

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Blanchard, P. M.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Burnett, J. G.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Chan, H. L. W.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Chan, T. H. T.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation,” Eng. Structures 28(5), 648–659 (2006).
[CrossRef]

Chem, G. W.

Chen, D.

Cheng, L. K.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation,” Eng. Structures 28(5), 648–659 (2006).
[CrossRef]

Chung, W. H.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation,” Eng. Structures 28(5), 648–659 (2006).
[CrossRef]

Culshaw, B.

Donlagic, D.

Eickhoff, W.

Flockhart, G. M. H.

Fu, Z. H.

Z. H. Fu, Y. X. Wang, D. Z. Yang, and Y. H. Shen, “Single-frequency linear cavity erbium-doped fiber laser for fiber-optic sensing applications,” Laser Phys. Lett. 6(8), 594–597 (2009).
[CrossRef]

Gander, M. J.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Greenaway, A. H.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Guan, B. O.

Y. Zhang, B. O. Guan, and H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express 17(12), 10050–10055 (2009).
[CrossRef] [PubMed]

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[CrossRef]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

He, S.

Jia, C. L.

H. Zhang, B. Liu, J. H. Luo, J. Sun, X. R. Ma, C. L. Jia, and S. X. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Jiang, M.

Jones, J. D. C.

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[CrossRef] [PubMed]

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Kersey, A.

Kubota, Y.

K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans. Electron. E 83-C, 309–314 (2000).

Lau, S. T.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Li, D. S.

H. N. Li, D. S. Li, and G. B. Song, “Recent applications offiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
[CrossRef]

Li, H. N.

H. N. Li, D. S. Li, and G. B. Song, “Recent applications offiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
[CrossRef]

Lin, C. Y.

Liu, B.

H. Zhang, B. Liu, J. H. Luo, J. Sun, X. R. Ma, C. L. Jia, and S. X. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Liu, S. Y.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation,” Eng. Structures 28(5), 648–659 (2006).
[CrossRef]

Liu, W. S.

Liu, Y.

Y. Liu, J. A. R. Williams, and I. Bennion, “Optical Bend sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett. 12(5), 531–533 (2000).
[CrossRef]

Luo, J. H.

H. Zhang, B. Liu, J. H. Luo, J. Sun, X. R. Ma, C. L. Jia, and S. X. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Ma, X. R.

H. Zhang, B. Liu, J. H. Luo, J. Sun, X. R. Ma, C. L. Jia, and S. X. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

MacPherson, W. N.

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[CrossRef] [PubMed]

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Marrone, M. J.

McBride, R.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Ni, Y. Q.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation,” Eng. Structures 28(5), 648–659 (2006).
[CrossRef]

Rashleigh, S. C.

Shen, Y. H.

Z. H. Fu, Y. X. Wang, D. Z. Yang, and Y. H. Shen, “Single-frequency linear cavity erbium-doped fiber laser for fiber-optic sensing applications,” Laser Phys. Lett. 6(8), 594–597 (2009).
[CrossRef]

Smith, A. M.

Song, G. B.

H. N. Li, D. S. Li, and G. B. Song, “Recent applications offiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
[CrossRef]

Sun, J.

H. Zhang, B. Liu, J. H. Luo, J. Sun, X. R. Ma, C. L. Jia, and S. X. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Tajima, K.

K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans. Electron. E 83-C, 309–314 (2000).

Tam, H. Y.

Y. Zhang, B. O. Guan, and H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express 17(12), 10050–10055 (2009).
[CrossRef] [PubMed]

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[CrossRef]

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation,” Eng. Structures 28(5), 648–659 (2006).
[CrossRef]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Ulrich, R.

Wang, L. A.

Wang, S. X.

H. Zhang, B. Liu, J. H. Luo, J. Sun, X. R. Ma, C. L. Jia, and S. X. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Wang, Y. X.

Z. H. Fu, Y. X. Wang, D. Z. Yang, and Y. H. Shen, “Single-frequency linear cavity erbium-doped fiber laser for fiber-optic sensing applications,” Laser Phys. Lett. 6(8), 594–597 (2009).
[CrossRef]

Watanabe, K.

K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans. Electron. E 83-C, 309–314 (2000).

Williams, J. A. R.

Y. Liu, J. A. R. Williams, and I. Bennion, “Optical Bend sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett. 12(5), 531–533 (2000).
[CrossRef]

Yang, D. Z.

Z. H. Fu, Y. X. Wang, D. Z. Yang, and Y. H. Shen, “Single-frequency linear cavity erbium-doped fiber laser for fiber-optic sensing applications,” Laser Phys. Lett. 6(8), 594–597 (2009).
[CrossRef]

Yu, L.

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation,” Eng. Structures 28(5), 648–659 (2006).
[CrossRef]

Zhang, H.

H. Zhang, B. Liu, J. H. Luo, J. Sun, X. R. Ma, C. L. Jia, and S. X. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Zhang, L.

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[CrossRef] [PubMed]

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Zhang, Y.

Y. Zhang, B. O. Guan, and H. Y. Tam, “Ultra-short distributed Bragg reflector fiber laser for sensing applications,” Opt. Express 17(12), 10050–10055 (2009).
[CrossRef] [PubMed]

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[CrossRef]

Appl. Opt.

Electron. Lett.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[CrossRef]

Eng. Structures

H. N. Li, D. S. Li, and G. B. Song, “Recent applications offiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
[CrossRef]

T. H. T. Chan, L. Yu, H. Y. Tam, Y. Q. Ni, S. Y. Liu, W. H. Chung, and L. K. Cheng, “Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation,” Eng. Structures 28(5), 648–659 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Liu, J. A. R. Williams, and I. Bennion, “Optical Bend sensor Based on Measurement of Resonance Mode Splitting of Long-Period Fiber Grating,” IEEE Photon. Technol. Lett. 12(5), 531–533 (2000).
[CrossRef]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

IEICE Trans. Electron. E

K. Watanabe, K. Tajima, and Y. Kubota, “Macrobending characteristics of a hetero-core splice fiber optic sensor for displacement and liquid detection,” IEICE Trans. Electron. E 83-C, 309–314 (2000).

J. Lightwave Technol.

Laser Phys. Lett.

Z. H. Fu, Y. X. Wang, D. Z. Yang, and Y. H. Shen, “Single-frequency linear cavity erbium-doped fiber laser for fiber-optic sensing applications,” Laser Phys. Lett. 6(8), 594–597 (2009).
[CrossRef]

Opt. Commun.

H. Zhang, B. Liu, J. H. Luo, J. Sun, X. R. Ma, C. L. Jia, and S. X. Wang, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode distributed Bragg reflector fiber laser,” Opt. Commun. 282(20), 4114–4118 (2009).
[CrossRef]

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the bending sensor based on a short cavity DBR fiber laser. The insert is the photograph of the DFB fiber laser when it is pumped.

Fig. 2
Fig. 2

(a) Optical spectrum of the DBR fiber laser and (b) superimposed electrical spectra of the polarization beat frequency of the proposed DBR fiber laser subjected to bending of different curvatures with θ = 0°. The inset in (a) shows the transmission spectrum of the high reflection FBG of the DBR fiber laser.

Fig. 3
Fig. 3

Birefringence of the DBR fiber laser versus bending curvature for θ = 0° or 180° (a), and 90° or 270° (d), and the corresponding polarization beat frequency of the DBR fiber laser versus bending curvature for θ = 0° (b), 180° (c), 90° (e), and 270° (f). Inserts of (a) and (d) show the cross section of the bent DBR fiber laser along the plane of the fast and slow axes, respectively. The blue arrowheads indicate the direction of UV light during FBG inscription. The arrows on the fiber indicate the force (ε) exerted on the fiber when it is bent, introducing stress and deformation to the fiber laser.

Fig. 4
Fig. 4

Polarization beat frequency and lasing wavelength response of the DBR fiber laser versus temperature.

Fig. 5
Fig. 5

Wavelength and power responses of the DBR fiber laser versus bending curvature.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ x , y = 2 n x , y Λ ,
f 0 = c B F B G / ( n e f f λ ) ,
B b e n d =   0. 25 n 3 ( p 11 p 12 ) ( 1 + ν ) κ 2 a 2 ,
B b e n d = 5 . 16 × 1 0 1 0 κ 2 .
B t o t a l = ( B b e n d 2 + B F B G 2 + 2 B b e n d B F B G cos 2 θ ) ,
f = ( f 0 cos 2 θ + 5.16 × 10 10 κ 2 c / n e f f λ ) 2 + f 0 2 sin 2 2 θ

Metrics