Abstract

We examined non-stoichiometric CaAlxSi(7-3x)/4N3:Eu2+ phosphors that were intentionally prepared with x = 0.7 ~1.3 to identify the origin of the deconvoluted Gaussian components that constitute the emission spectra of stoichiometric CaAlSiN3:Eu2+ phosphors. The Al/Si molar ratio around the Eu2+ activator caused the deconvoluted Gaussian peaks. The Eu2+ activator sites in Al-rich environments gave rise to the lower-energy emission peak, while those in Si-rich environments were related to the higher-energy emission peaks. Active energy transfer from the Eu2+ activator site in the Si-rich environment to the Eu2+ activator site in the Al-rich environment was confirmed. Particle swarm optimization was employed to estimate the nine unknown decision parameters that control the energy transfer process. All of the decision parameters were estimated within the range of reasonable values.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Kulshreshtha, J. H. Kwak, Y.-J. Park, and K.-S. Sohn, “Photoluminescent and decay behaviors of Mn2+ and Ce2+ co-activated MgSiN2 phosphors for use in LED applications,” Opt. Lett. 34(6), 794–796 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-6-794 .
    [CrossRef] [PubMed]
  2. T. Suehiro, H. Onuma, N. Hirosaki, R.-J. Xie, T. Sato, and A. Miyamoto, “Powder Synthesis of Y-α-SiAlON and Its Potential as a Phosphor Host,” J. Phys. Chem. C 114(2), 1337–1342 (2010).
    [CrossRef]
  3. C. Zhang, H. Lian, D. Kong, S. Huang, and J. Lin, “Stuctural and Bluish-White Luminescent Properties of Li+-Doped BPO4 as a Potential Environmentally Friendly Phosphor Material,” J. Phys. Chem. C 113(4), 1580–1588 (2009).
    [CrossRef]
  4. X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties,” Chem. Mater. 19(18), 4592–4599 (2007).
    [CrossRef]
  5. Y. Q. Li, N. Hirosaki, R.-J. Xie, T. Takeda, and M. Mitomo, “Yellow-Orange-Emitting CaAlSiN3:Ce3+ phosphor: Structure, Photoluminescence, and Application in White LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
    [CrossRef]
  6. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Tamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Soc 9, H22–H25 (2006).
  7. H. Watanabe, H. Yamane, and N. Kijima, “Crystal structure and luminescence of Sr0.99Eu0.01AlSiN3,” J. Solution Chem. 181, 1848–1852 (2008).
  8. J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures,” Chem. Mater. 20(6), 2095–2105 (2008).
    [CrossRef]
  9. K. Uheda, N. Hirosaki, and H. Yamamoto, “Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
    [CrossRef]
  10. J. Li, T. Watanabe, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of Eu-Doped CaAlSiN3 from Ammonometallates: Effects of Sodium Content and Pressure,” J. Am. Ceram. Soc. 92(2), 344–349 (2009).
    [CrossRef]
  11. H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1-xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31–F36 (2008).
    [CrossRef]
  12. H. Watanabe and N. Kijima, “Crystal structure and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphor,” J. Alloy. Comp. 475(1-2), 434–439 (2009).
    [CrossRef]
  13. S. Lee, and K.-S. Sohn, “Effect of inhomogeneous broadening on time-resolved photoluminescence in CaAlSiN3:Eu2+,” Opt. Lett. 35, 1004–1006 (2010).
  14. R. C. Eberhart, and J. Kennedy, In A new optimizer using particle swarm theory (Proc IEEE Int Conf on Neural networks, Nagoya, 1995) p. 39–43.
  15. J. Kennedy and R. C. Eberhart, In Particle swarm optimization (Proc IEEE Int Conf on Neural Networks, Perth, 1995) p. 1942–1948.
  16. J. Kennedy, In The particle swarm: Social adaption of knowledge (Proc. IEEE Int. Conf. on Evolutionary Computation, Indianapolis, 1997) p. 303–308.
  17. P. Dorenbos, L. Pierron, L. Dinca, C. W. E. van Eijk, A. Kahn-Harari, and B. Viana, "4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4," J. Phys. Condens. Matter 15(3), 511–520 (2003).
    [CrossRef]
  18. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. II. Chloride, bromide, and iodide compounds,” Phys. Rev. B 62(23), 15650–15659 (2000).
    [CrossRef]
  19. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62(23), 15640–15649 (2000).
    [CrossRef]
  20. P. Dorenbos, “Relation between Eu2+ and Ce3+ f ↔ d-transition energies in inorganic compounds,” J. Phys. Condens. Matter 15(27), 4797–4807 (2003).
    [CrossRef]
  21. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64(12), 125117 (2001).
    [CrossRef]
  22. D. Ahn, N. Shin, K. D. Park, and K.-S. Sohn, “Energy Transfer Between Activators at Different Crystallographic Sites,” J. Electrochem. Soc. 156(9), J242–J248 (2009).
    [CrossRef]
  23. K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, “Time-resolved photoluminescence analysis of two-peak emission behavior in Sr2Si5N8:Eu2+,” Appl. Phys. Lett. 95(12), 121903 (2009).
    [CrossRef]
  24. K.-S. Sohn, B. Lee, R.-J. Xie, and N. Hirosaki, “Rate-equation model for energy transfer between activators at different crystallographic sites in Sr2Si5N8:Eu2+,” Opt. Lett 34, 3427–3429 (2009).
    [CrossRef] [PubMed]
  25. S. O. Vásquez, “Energy transfer processes in organized media. III. A two-center model for nonhomogeneous crystals,” J. Chem. Phys. 108(2), 723–728 (1998).
    [CrossRef]
  26. R. Loudon, In The Quantum Theory of Light (Oxford Univ, Oxford, 1973)
  27. R. Reisfeld, E. Greenberg, R. Velapodi, and B. Barnett, “Luminescence Quantum Efficiency of Gd and Tb in Borate Glasses and the Mechanism of Energy Transfer between Them,” J. Chem. Phys. 56(4), 1698–1705 (1972).
    [CrossRef]
  28. H. Ebendorff-Heidepriem and Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15(1), 7–25 (2000). .
    [CrossRef]
  29. S. O. Vásquez, “Energy transfer processes in organized media. I. A crystal model for cubic sites,” J. Chem. Phys. 104(19), 7652–7657 (1996).
    [CrossRef]
  30. S. O. Vásquez, “Energy transfer processes in organized media. II. Generalization of the crystal model for dipole-dipole interactions in cubic sites,” J. Chem. Phys. 106(21), 8664–8671 (1997).
    [CrossRef]
  31. S. O. Vásquez, “Crystal model for energy-transfer processes in organized media: Higher-order electric multipolar interations,” Phys. Rev. B 60(12), 8575–8585 (1999).
    [CrossRef]
  32. S. O. Vásquez, “Energy-transfer processes in quasi-bidimensional crystal arrays,” Phys. Rev. B 64(12), 125103 (2001).
    [CrossRef]
  33. W. E. Boyce and R. C. Diprima, In Elementry Differential Equations and Boundary Value Problems (John Wiley & Sons, 1986)

2010

T. Suehiro, H. Onuma, N. Hirosaki, R.-J. Xie, T. Sato, and A. Miyamoto, “Powder Synthesis of Y-α-SiAlON and Its Potential as a Phosphor Host,” J. Phys. Chem. C 114(2), 1337–1342 (2010).
[CrossRef]

2009

C. Zhang, H. Lian, D. Kong, S. Huang, and J. Lin, “Stuctural and Bluish-White Luminescent Properties of Li+-Doped BPO4 as a Potential Environmentally Friendly Phosphor Material,” J. Phys. Chem. C 113(4), 1580–1588 (2009).
[CrossRef]

J. Li, T. Watanabe, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of Eu-Doped CaAlSiN3 from Ammonometallates: Effects of Sodium Content and Pressure,” J. Am. Ceram. Soc. 92(2), 344–349 (2009).
[CrossRef]

H. Watanabe and N. Kijima, “Crystal structure and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphor,” J. Alloy. Comp. 475(1-2), 434–439 (2009).
[CrossRef]

D. Ahn, N. Shin, K. D. Park, and K.-S. Sohn, “Energy Transfer Between Activators at Different Crystallographic Sites,” J. Electrochem. Soc. 156(9), J242–J248 (2009).
[CrossRef]

K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, “Time-resolved photoluminescence analysis of two-peak emission behavior in Sr2Si5N8:Eu2+,” Appl. Phys. Lett. 95(12), 121903 (2009).
[CrossRef]

C. Kulshreshtha, J. H. Kwak, Y.-J. Park, and K.-S. Sohn, “Photoluminescent and decay behaviors of Mn2+ and Ce2+ co-activated MgSiN2 phosphors for use in LED applications,” Opt. Lett. 34(6), 794–796 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-6-794 .
[CrossRef] [PubMed]

2008

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1-xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31–F36 (2008).
[CrossRef]

Y. Q. Li, N. Hirosaki, R.-J. Xie, T. Takeda, and M. Mitomo, “Yellow-Orange-Emitting CaAlSiN3:Ce3+ phosphor: Structure, Photoluminescence, and Application in White LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[CrossRef]

H. Watanabe, H. Yamane, and N. Kijima, “Crystal structure and luminescence of Sr0.99Eu0.01AlSiN3,” J. Solution Chem. 181, 1848–1852 (2008).

J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures,” Chem. Mater. 20(6), 2095–2105 (2008).
[CrossRef]

2007

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

2006

K. Uheda, N. Hirosaki, and H. Yamamoto, “Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
[CrossRef]

2003

P. Dorenbos, L. Pierron, L. Dinca, C. W. E. van Eijk, A. Kahn-Harari, and B. Viana, "4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4," J. Phys. Condens. Matter 15(3), 511–520 (2003).
[CrossRef]

P. Dorenbos, “Relation between Eu2+ and Ce3+ f ↔ d-transition energies in inorganic compounds,” J. Phys. Condens. Matter 15(27), 4797–4807 (2003).
[CrossRef]

2001

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64(12), 125117 (2001).
[CrossRef]

S. O. Vásquez, “Energy-transfer processes in quasi-bidimensional crystal arrays,” Phys. Rev. B 64(12), 125103 (2001).
[CrossRef]

2000

H. Ebendorff-Heidepriem and Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15(1), 7–25 (2000). .
[CrossRef]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. II. Chloride, bromide, and iodide compounds,” Phys. Rev. B 62(23), 15650–15659 (2000).
[CrossRef]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62(23), 15640–15649 (2000).
[CrossRef]

1999

S. O. Vásquez, “Crystal model for energy-transfer processes in organized media: Higher-order electric multipolar interations,” Phys. Rev. B 60(12), 8575–8585 (1999).
[CrossRef]

1998

S. O. Vásquez, “Energy transfer processes in organized media. III. A two-center model for nonhomogeneous crystals,” J. Chem. Phys. 108(2), 723–728 (1998).
[CrossRef]

1997

S. O. Vásquez, “Energy transfer processes in organized media. II. Generalization of the crystal model for dipole-dipole interactions in cubic sites,” J. Chem. Phys. 106(21), 8664–8671 (1997).
[CrossRef]

1996

S. O. Vásquez, “Energy transfer processes in organized media. I. A crystal model for cubic sites,” J. Chem. Phys. 104(19), 7652–7657 (1996).
[CrossRef]

1972

R. Reisfeld, E. Greenberg, R. Velapodi, and B. Barnett, “Luminescence Quantum Efficiency of Gd and Tb in Borate Glasses and the Mechanism of Energy Transfer between Them,” J. Chem. Phys. 56(4), 1698–1705 (1972).
[CrossRef]

Ahn, D.

D. Ahn, N. Shin, K. D. Park, and K.-S. Sohn, “Energy Transfer Between Activators at Different Crystallographic Sites,” J. Electrochem. Soc. 156(9), J242–J248 (2009).
[CrossRef]

Barnett, B.

R. Reisfeld, E. Greenberg, R. Velapodi, and B. Barnett, “Luminescence Quantum Efficiency of Gd and Tb in Borate Glasses and the Mechanism of Energy Transfer between Them,” J. Chem. Phys. 56(4), 1698–1705 (1972).
[CrossRef]

Dinca, L.

P. Dorenbos, L. Pierron, L. Dinca, C. W. E. van Eijk, A. Kahn-Harari, and B. Viana, "4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4," J. Phys. Condens. Matter 15(3), 511–520 (2003).
[CrossRef]

Dorenbos, P.

P. Dorenbos, “Relation between Eu2+ and Ce3+ f ↔ d-transition energies in inorganic compounds,” J. Phys. Condens. Matter 15(27), 4797–4807 (2003).
[CrossRef]

P. Dorenbos, L. Pierron, L. Dinca, C. W. E. van Eijk, A. Kahn-Harari, and B. Viana, "4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4," J. Phys. Condens. Matter 15(3), 511–520 (2003).
[CrossRef]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64(12), 125117 (2001).
[CrossRef]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. II. Chloride, bromide, and iodide compounds,” Phys. Rev. B 62(23), 15650–15659 (2000).
[CrossRef]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62(23), 15640–15649 (2000).
[CrossRef]

Ebendorff-Heidepriem, H.

H. Ebendorff-Heidepriem and Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15(1), 7–25 (2000). .
[CrossRef]

Eijk, C. W. E.

P. Dorenbos, L. Pierron, L. Dinca, C. W. E. van Eijk, A. Kahn-Harari, and B. Viana, "4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4," J. Phys. Condens. Matter 15(3), 511–520 (2003).
[CrossRef]

Greenberg, E.

R. Reisfeld, E. Greenberg, R. Velapodi, and B. Barnett, “Luminescence Quantum Efficiency of Gd and Tb in Borate Glasses and the Mechanism of Energy Transfer between Them,” J. Chem. Phys. 56(4), 1698–1705 (1972).
[CrossRef]

Hanzawa, H.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Hirosaki, N.

T. Suehiro, H. Onuma, N. Hirosaki, R.-J. Xie, T. Sato, and A. Miyamoto, “Powder Synthesis of Y-α-SiAlON and Its Potential as a Phosphor Host,” J. Phys. Chem. C 114(2), 1337–1342 (2010).
[CrossRef]

K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, “Time-resolved photoluminescence analysis of two-peak emission behavior in Sr2Si5N8:Eu2+,” Appl. Phys. Lett. 95(12), 121903 (2009).
[CrossRef]

Y. Q. Li, N. Hirosaki, R.-J. Xie, T. Takeda, and M. Mitomo, “Yellow-Orange-Emitting CaAlSiN3:Ce3+ phosphor: Structure, Photoluminescence, and Application in White LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[CrossRef]

K. Uheda, N. Hirosaki, and H. Yamamoto, “Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
[CrossRef]

Horikawa, T.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Huang, S.

C. Zhang, H. Lian, D. Kong, S. Huang, and J. Lin, “Stuctural and Bluish-White Luminescent Properties of Li+-Doped BPO4 as a Potential Environmentally Friendly Phosphor Material,” J. Phys. Chem. C 113(4), 1580–1588 (2009).
[CrossRef]

Itou, M.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1-xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31–F36 (2008).
[CrossRef]

Kahn-Harari, A.

P. Dorenbos, L. Pierron, L. Dinca, C. W. E. van Eijk, A. Kahn-Harari, and B. Viana, "4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4," J. Phys. Condens. Matter 15(3), 511–520 (2003).
[CrossRef]

Kijima, N.

H. Watanabe and N. Kijima, “Crystal structure and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphor,” J. Alloy. Comp. 475(1-2), 434–439 (2009).
[CrossRef]

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1-xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31–F36 (2008).
[CrossRef]

H. Watanabe, H. Yamane, and N. Kijima, “Crystal structure and luminescence of Sr0.99Eu0.01AlSiN3,” J. Solution Chem. 181, 1848–1852 (2008).

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Kong, D.

C. Zhang, H. Lian, D. Kong, S. Huang, and J. Lin, “Stuctural and Bluish-White Luminescent Properties of Li+-Doped BPO4 as a Potential Environmentally Friendly Phosphor Material,” J. Phys. Chem. C 113(4), 1580–1588 (2009).
[CrossRef]

Kulshreshtha, C.

Kwak, J. H.

Lee, S.

K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, “Time-resolved photoluminescence analysis of two-peak emission behavior in Sr2Si5N8:Eu2+,” Appl. Phys. Lett. 95(12), 121903 (2009).
[CrossRef]

Li, J.

J. Li, T. Watanabe, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of Eu-Doped CaAlSiN3 from Ammonometallates: Effects of Sodium Content and Pressure,” J. Am. Ceram. Soc. 92(2), 344–349 (2009).
[CrossRef]

J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures,” Chem. Mater. 20(6), 2095–2105 (2008).
[CrossRef]

Li, Y. Q.

Y. Q. Li, N. Hirosaki, R.-J. Xie, T. Takeda, and M. Mitomo, “Yellow-Orange-Emitting CaAlSiN3:Ce3+ phosphor: Structure, Photoluminescence, and Application in White LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[CrossRef]

Lian, H.

C. Zhang, H. Lian, D. Kong, S. Huang, and J. Lin, “Stuctural and Bluish-White Luminescent Properties of Li+-Doped BPO4 as a Potential Environmentally Friendly Phosphor Material,” J. Phys. Chem. C 113(4), 1580–1588 (2009).
[CrossRef]

Lin, J.

C. Zhang, H. Lian, D. Kong, S. Huang, and J. Lin, “Stuctural and Bluish-White Luminescent Properties of Li+-Doped BPO4 as a Potential Environmentally Friendly Phosphor Material,” J. Phys. Chem. C 113(4), 1580–1588 (2009).
[CrossRef]

Machida, K.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Mitomo, M.

Y. Q. Li, N. Hirosaki, R.-J. Xie, T. Takeda, and M. Mitomo, “Yellow-Orange-Emitting CaAlSiN3:Ce3+ phosphor: Structure, Photoluminescence, and Application in White LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[CrossRef]

Miyamoto, A.

T. Suehiro, H. Onuma, N. Hirosaki, R.-J. Xie, T. Sato, and A. Miyamoto, “Powder Synthesis of Y-α-SiAlON and Its Potential as a Phosphor Host,” J. Phys. Chem. C 114(2), 1337–1342 (2010).
[CrossRef]

Onuma, H.

T. Suehiro, H. Onuma, N. Hirosaki, R.-J. Xie, T. Sato, and A. Miyamoto, “Powder Synthesis of Y-α-SiAlON and Its Potential as a Phosphor Host,” J. Phys. Chem. C 114(2), 1337–1342 (2010).
[CrossRef]

Park, K. D.

D. Ahn, N. Shin, K. D. Park, and K.-S. Sohn, “Energy Transfer Between Activators at Different Crystallographic Sites,” J. Electrochem. Soc. 156(9), J242–J248 (2009).
[CrossRef]

Park, Y.-J.

Piao, X.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Pierron, L.

P. Dorenbos, L. Pierron, L. Dinca, C. W. E. van Eijk, A. Kahn-Harari, and B. Viana, "4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4," J. Phys. Condens. Matter 15(3), 511–520 (2003).
[CrossRef]

Reisfeld, R.

R. Reisfeld, E. Greenberg, R. Velapodi, and B. Barnett, “Luminescence Quantum Efficiency of Gd and Tb in Borate Glasses and the Mechanism of Energy Transfer between Them,” J. Chem. Phys. 56(4), 1698–1705 (1972).
[CrossRef]

Sakamoto, N.

J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures,” Chem. Mater. 20(6), 2095–2105 (2008).
[CrossRef]

Sato, T.

T. Suehiro, H. Onuma, N. Hirosaki, R.-J. Xie, T. Sato, and A. Miyamoto, “Powder Synthesis of Y-α-SiAlON and Its Potential as a Phosphor Host,” J. Phys. Chem. C 114(2), 1337–1342 (2010).
[CrossRef]

Seki, K.

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1-xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31–F36 (2008).
[CrossRef]

Setoyama, T.

J. Li, T. Watanabe, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of Eu-Doped CaAlSiN3 from Ammonometallates: Effects of Sodium Content and Pressure,” J. Am. Ceram. Soc. 92(2), 344–349 (2009).
[CrossRef]

J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures,” Chem. Mater. 20(6), 2095–2105 (2008).
[CrossRef]

Shimomura, Y.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Shin, N.

D. Ahn, N. Shin, K. D. Park, and K.-S. Sohn, “Energy Transfer Between Activators at Different Crystallographic Sites,” J. Electrochem. Soc. 156(9), J242–J248 (2009).
[CrossRef]

Sohn, K.-S.

D. Ahn, N. Shin, K. D. Park, and K.-S. Sohn, “Energy Transfer Between Activators at Different Crystallographic Sites,” J. Electrochem. Soc. 156(9), J242–J248 (2009).
[CrossRef]

K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, “Time-resolved photoluminescence analysis of two-peak emission behavior in Sr2Si5N8:Eu2+,” Appl. Phys. Lett. 95(12), 121903 (2009).
[CrossRef]

C. Kulshreshtha, J. H. Kwak, Y.-J. Park, and K.-S. Sohn, “Photoluminescent and decay behaviors of Mn2+ and Ce2+ co-activated MgSiN2 phosphors for use in LED applications,” Opt. Lett. 34(6), 794–796 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-6-794 .
[CrossRef] [PubMed]

Suehiro, T.

T. Suehiro, H. Onuma, N. Hirosaki, R.-J. Xie, T. Sato, and A. Miyamoto, “Powder Synthesis of Y-α-SiAlON and Its Potential as a Phosphor Host,” J. Phys. Chem. C 114(2), 1337–1342 (2010).
[CrossRef]

Takeda, T.

Y. Q. Li, N. Hirosaki, R.-J. Xie, T. Takeda, and M. Mitomo, “Yellow-Orange-Emitting CaAlSiN3:Ce3+ phosphor: Structure, Photoluminescence, and Application in White LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[CrossRef]

Uheda, K.

K. Uheda, N. Hirosaki, and H. Yamamoto, “Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
[CrossRef]

Vásquez, S. O.

S. O. Vásquez, “Energy-transfer processes in quasi-bidimensional crystal arrays,” Phys. Rev. B 64(12), 125103 (2001).
[CrossRef]

S. O. Vásquez, “Crystal model for energy-transfer processes in organized media: Higher-order electric multipolar interations,” Phys. Rev. B 60(12), 8575–8585 (1999).
[CrossRef]

S. O. Vásquez, “Energy transfer processes in organized media. III. A two-center model for nonhomogeneous crystals,” J. Chem. Phys. 108(2), 723–728 (1998).
[CrossRef]

S. O. Vásquez, “Energy transfer processes in organized media. II. Generalization of the crystal model for dipole-dipole interactions in cubic sites,” J. Chem. Phys. 106(21), 8664–8671 (1997).
[CrossRef]

S. O. Vásquez, “Energy transfer processes in organized media. I. A crystal model for cubic sites,” J. Chem. Phys. 104(19), 7652–7657 (1996).
[CrossRef]

Velapodi, R.

R. Reisfeld, E. Greenberg, R. Velapodi, and B. Barnett, “Luminescence Quantum Efficiency of Gd and Tb in Borate Glasses and the Mechanism of Energy Transfer between Them,” J. Chem. Phys. 56(4), 1698–1705 (1972).
[CrossRef]

Viana, B.

P. Dorenbos, L. Pierron, L. Dinca, C. W. E. van Eijk, A. Kahn-Harari, and B. Viana, "4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4," J. Phys. Condens. Matter 15(3), 511–520 (2003).
[CrossRef]

Wada, H.

J. Li, T. Watanabe, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of Eu-Doped CaAlSiN3 from Ammonometallates: Effects of Sodium Content and Pressure,” J. Am. Ceram. Soc. 92(2), 344–349 (2009).
[CrossRef]

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1-xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31–F36 (2008).
[CrossRef]

J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures,” Chem. Mater. 20(6), 2095–2105 (2008).
[CrossRef]

Watanabe, H.

H. Watanabe and N. Kijima, “Crystal structure and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphor,” J. Alloy. Comp. 475(1-2), 434–439 (2009).
[CrossRef]

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1-xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31–F36 (2008).
[CrossRef]

H. Watanabe, H. Yamane, and N. Kijima, “Crystal structure and luminescence of Sr0.99Eu0.01AlSiN3,” J. Solution Chem. 181, 1848–1852 (2008).

Watanabe, T.

J. Li, T. Watanabe, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of Eu-Doped CaAlSiN3 from Ammonometallates: Effects of Sodium Content and Pressure,” J. Am. Ceram. Soc. 92(2), 344–349 (2009).
[CrossRef]

J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures,” Chem. Mater. 20(6), 2095–2105 (2008).
[CrossRef]

Xie, R.-J.

T. Suehiro, H. Onuma, N. Hirosaki, R.-J. Xie, T. Sato, and A. Miyamoto, “Powder Synthesis of Y-α-SiAlON and Its Potential as a Phosphor Host,” J. Phys. Chem. C 114(2), 1337–1342 (2010).
[CrossRef]

K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, “Time-resolved photoluminescence analysis of two-peak emission behavior in Sr2Si5N8:Eu2+,” Appl. Phys. Lett. 95(12), 121903 (2009).
[CrossRef]

Y. Q. Li, N. Hirosaki, R.-J. Xie, T. Takeda, and M. Mitomo, “Yellow-Orange-Emitting CaAlSiN3:Ce3+ phosphor: Structure, Photoluminescence, and Application in White LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[CrossRef]

Yamamoto, H.

K. Uheda, N. Hirosaki, and H. Yamamoto, “Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
[CrossRef]

Yamane, H.

H. Watanabe, H. Yamane, and N. Kijima, “Crystal structure and luminescence of Sr0.99Eu0.01AlSiN3,” J. Solution Chem. 181, 1848–1852 (2008).

Yoshimura, M.

J. Li, T. Watanabe, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of Eu-Doped CaAlSiN3 from Ammonometallates: Effects of Sodium Content and Pressure,” J. Am. Ceram. Soc. 92(2), 344–349 (2009).
[CrossRef]

J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures,” Chem. Mater. 20(6), 2095–2105 (2008).
[CrossRef]

Zhang, C.

C. Zhang, H. Lian, D. Kong, S. Huang, and J. Lin, “Stuctural and Bluish-White Luminescent Properties of Li+-Doped BPO4 as a Potential Environmentally Friendly Phosphor Material,” J. Phys. Chem. C 113(4), 1580–1588 (2009).
[CrossRef]

Appl. Phys. Lett.

K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, “Time-resolved photoluminescence analysis of two-peak emission behavior in Sr2Si5N8:Eu2+,” Appl. Phys. Lett. 95(12), 121903 (2009).
[CrossRef]

Chem. Mater.

X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties,” Chem. Mater. 19(18), 4592–4599 (2007).
[CrossRef]

Y. Q. Li, N. Hirosaki, R.-J. Xie, T. Takeda, and M. Mitomo, “Yellow-Orange-Emitting CaAlSiN3:Ce3+ phosphor: Structure, Photoluminescence, and Application in White LEDs,” Chem. Mater. 20(21), 6704–6714 (2008).
[CrossRef]

J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures,” Chem. Mater. 20(6), 2095–2105 (2008).
[CrossRef]

J. Alloy. Comp.

H. Watanabe and N. Kijima, “Crystal structure and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphor,” J. Alloy. Comp. 475(1-2), 434–439 (2009).
[CrossRef]

J. Am. Ceram. Soc.

J. Li, T. Watanabe, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of Eu-Doped CaAlSiN3 from Ammonometallates: Effects of Sodium Content and Pressure,” J. Am. Ceram. Soc. 92(2), 344–349 (2009).
[CrossRef]

J. Chem. Phys.

S. O. Vásquez, “Energy transfer processes in organized media. III. A two-center model for nonhomogeneous crystals,” J. Chem. Phys. 108(2), 723–728 (1998).
[CrossRef]

R. Reisfeld, E. Greenberg, R. Velapodi, and B. Barnett, “Luminescence Quantum Efficiency of Gd and Tb in Borate Glasses and the Mechanism of Energy Transfer between Them,” J. Chem. Phys. 56(4), 1698–1705 (1972).
[CrossRef]

S. O. Vásquez, “Energy transfer processes in organized media. I. A crystal model for cubic sites,” J. Chem. Phys. 104(19), 7652–7657 (1996).
[CrossRef]

S. O. Vásquez, “Energy transfer processes in organized media. II. Generalization of the crystal model for dipole-dipole interactions in cubic sites,” J. Chem. Phys. 106(21), 8664–8671 (1997).
[CrossRef]

J. Electrochem. Soc.

D. Ahn, N. Shin, K. D. Park, and K.-S. Sohn, “Energy Transfer Between Activators at Different Crystallographic Sites,” J. Electrochem. Soc. 156(9), J242–J248 (2009).
[CrossRef]

H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1-xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31–F36 (2008).
[CrossRef]

J. Phys. Chem. C

T. Suehiro, H. Onuma, N. Hirosaki, R.-J. Xie, T. Sato, and A. Miyamoto, “Powder Synthesis of Y-α-SiAlON and Its Potential as a Phosphor Host,” J. Phys. Chem. C 114(2), 1337–1342 (2010).
[CrossRef]

C. Zhang, H. Lian, D. Kong, S. Huang, and J. Lin, “Stuctural and Bluish-White Luminescent Properties of Li+-Doped BPO4 as a Potential Environmentally Friendly Phosphor Material,” J. Phys. Chem. C 113(4), 1580–1588 (2009).
[CrossRef]

J. Phys. Condens. Matter

P. Dorenbos, L. Pierron, L. Dinca, C. W. E. van Eijk, A. Kahn-Harari, and B. Viana, "4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4," J. Phys. Condens. Matter 15(3), 511–520 (2003).
[CrossRef]

P. Dorenbos, “Relation between Eu2+ and Ce3+ f ↔ d-transition energies in inorganic compounds,” J. Phys. Condens. Matter 15(27), 4797–4807 (2003).
[CrossRef]

J. Solution Chem.

H. Watanabe, H. Yamane, and N. Kijima, “Crystal structure and luminescence of Sr0.99Eu0.01AlSiN3,” J. Solution Chem. 181, 1848–1852 (2008).

Opt. Lett.

Opt. Mater.

H. Ebendorff-Heidepriem and Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15(1), 7–25 (2000). .
[CrossRef]

Phys. Rev. B

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64(12), 125117 (2001).
[CrossRef]

S. O. Vásquez, “Crystal model for energy-transfer processes in organized media: Higher-order electric multipolar interations,” Phys. Rev. B 60(12), 8575–8585 (1999).
[CrossRef]

S. O. Vásquez, “Energy-transfer processes in quasi-bidimensional crystal arrays,” Phys. Rev. B 64(12), 125103 (2001).
[CrossRef]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. II. Chloride, bromide, and iodide compounds,” Phys. Rev. B 62(23), 15650–15659 (2000).
[CrossRef]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62(23), 15640–15649 (2000).
[CrossRef]

Phys. Status Solidi

K. Uheda, N. Hirosaki, and H. Yamamoto, “Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006).
[CrossRef]

Other

K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Tamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Soc 9, H22–H25 (2006).

S. Lee, and K.-S. Sohn, “Effect of inhomogeneous broadening on time-resolved photoluminescence in CaAlSiN3:Eu2+,” Opt. Lett. 35, 1004–1006 (2010).

R. C. Eberhart, and J. Kennedy, In A new optimizer using particle swarm theory (Proc IEEE Int Conf on Neural networks, Nagoya, 1995) p. 39–43.

J. Kennedy and R. C. Eberhart, In Particle swarm optimization (Proc IEEE Int Conf on Neural Networks, Perth, 1995) p. 1942–1948.

J. Kennedy, In The particle swarm: Social adaption of knowledge (Proc. IEEE Int. Conf. on Evolutionary Computation, Indianapolis, 1997) p. 303–308.

W. E. Boyce and R. C. Diprima, In Elementry Differential Equations and Boundary Value Problems (John Wiley & Sons, 1986)

K.-S. Sohn, B. Lee, R.-J. Xie, and N. Hirosaki, “Rate-equation model for energy transfer between activators at different crystallographic sites in Sr2Si5N8:Eu2+,” Opt. Lett 34, 3427–3429 (2009).
[CrossRef] [PubMed]

R. Loudon, In The Quantum Theory of Light (Oxford Univ, Oxford, 1973)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Continuous wave (CW) emission spectra of CaAlxSi(7-3x)/4N3:Eu2+ phosphors with x = 0.7 ~1.3 and an image of each sample taken under an excitation at 365 nm is shown in the inset, and (b) Gaussian deconvolution of CaAl0.7Si1.225N3 (N-CASIN-0.7).

Fig. 2
Fig. 2

XRD patterns and corresponding Rietveld refining results of (a) N-CASIN-0.7 and (b) N-CASIN-1.2.

Fig. 3
Fig. 3

Time-resolved photoluminescence (TRPL) spectra of CaAlxSi(7-3x)/4N3:Eu2+ phosphors with x = 0.7 ~1.3. The different colors represent different delay times for the TRPL curves, i.e., the black curve was acquired at a delay time of 40 nsec, red at 80 nsec, green at 120 nsec, blue at 160 nsec, and so on.

Fig. 4
Fig. 4

Time-resolved emission spectra of (a) N-CASIN-0.7 and (b) N-CASIN-1.2. The deconvoluted Gaussian peaks are shown.

Fig. 5
Fig. 5

Decay curves monitored at (a) 525 and 700 nm for N-CASIN-0.7, and (b) 525 and 725 nm for N-CASIN-1.2. The solid lines represent the rate equation model.

Fig. 6
Fig. 6

Calculated time evolution (decay curve) of normalized ρ C a 1 e ,       ρ ¯ C a 1 e ,       ρ C a 2 e and     ρ ¯ C a 2 e for (a) N-CASIN-0.7 and (b) N-CASIN-1.2. All curves were normalized by ρ C a 1 e ( 0 ) .

Tables (3)

Tables Icon

Table 1 Atomic coordination and Ca-N bond length data

Tables Icon

Table 2 EDS compositional analysis (atomic %) of eight different spots

Tables Icon

Table 3 The best-fitted parameters from the PSO process

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d ρ C a 1 e d t     =     G ρ C a 1 g k r C a 1 ρ C a 1 e     k 12 ρ S r 1 e ρ S r 2 g           k 11 ρ C a 1 e ρ ¯ C a 1 g     k 12 ρ C a 1 e ρ ¯ C a 2 g     d ρ C a 2 e d t     =     G ρ C a 2 g k r C a 2 ρ C a 2 e +     k 12 ρ C a 1 e ρ C a 2 g           k 22 ρ C a 2 e ρ ¯ C a 2 g     d ρ C a 1 g d t     =     G ρ C a 1 g + k r C a 1 ρ C a 1 e +     k 12 ρ C a 1 e ρ C a 2 g     +       k 11 ρ C a 1 e ρ ¯ C a 1 g +     k 12 ρ C a 1 e ρ ¯ C a 2 g d ρ C a 2 g d t     =     G ρ C a 2 g + k r C a 2 ρ C a 2 e     k 12 ρ C a 1 e ρ C a 2 g     +       k 22 ρ C a 2 e ρ ¯ C a 2 g                                                                                                             ( 1 ) d ρ ¯ C a 1 e d t     =     G ρ ¯ C a 1 g     ( k r C a 1 + K n ) ρ ¯ C a 1 e +     k 11 ρ C a 1 e ρ ¯ C a 1 g     d ρ ¯ C a 2 e d t     =     G ρ ¯ C a 2 g     ( k r C a 2 + K n ) ρ ¯ C a 2 e     +     k 12 ρ C a 1 e ρ ¯ C a 2 g     +       k 22 ρ C a 2 e ρ ¯ C a 2 g       d ρ ¯ C a 1 g d t     =     G ρ ¯ C a 1 g +     ( k r C a 1 + K n ) ρ ¯ C a 1 e     k 11 ρ C a 1 e ρ ¯ C a 1 g     d ρ ¯ C a 2 g d t     =     G ρ ¯ C a 2 g +     ( k r C a 2 + K n ) ρ ¯ C a 2 e         k 12 ρ C a 1 e ρ ¯ C a 2 g           k 22 ρ C a 2 e ρ ¯ C a 2 g     ρ C a 1 e     +     ρ C a 2 e     + ρ C a 1 g + ρ C a 2 g + ρ ¯ C a 1 e + ρ ¯ C a 2 e + ρ ¯ C a 1 g +     ρ ¯ C a 2 g =     t o t a l E u 2 +     n u m b e r p e r     u n i t     v o l u m e       ( ρ T o t a l )
k x y     =     3 e 2 c 3 h 5 π ε 2 m     ×     k r x     × ​   S O     × f y   ​ × l n l max ( 1 R l g ) 6 .
m ( ρ C a 1 e     +     ρ ¯ C a 1 e ) *     +         ( 1 m ) ( ρ C a 2 e     + ρ ¯ C a 2 e ) * =     I 525
n ( ρ C a 2 e     +     ρ ¯ C a 2 e ) *     +         ( 1 n ) ( ρ C a 1 e     + ρ ¯ C a 1 e ) *     =     I 700 f o r   N _ C A S I N _ 0.7   n ( ρ C a 2 e     +     ρ ¯ C a 2 e ) *     +         ( 1 n ) ( ρ C a 1 e     + ρ ¯ C a 1 e ) *     =     I 725     f o r     N _ C A S I N _ 1.2
ρ C a 1 e = 0 ,     ρ C a 2 e = 0 ,     ρ C a 1 g = R C a 1 ( 1 q ) 2 ρ T o t a l ,     ρ C a 2 g = ( 1 R C a 1 ) ( 1 q ) 2 ρ T o t a l , ​ ​   ρ ¯ C a 1 e = 0 ,     ρ ¯ C a 2 e = 0 ,     ρ ¯ C a 1 g = R C a 1 q 2 ρ T o t a l ,     ρ ¯ C a 2 g = ( 1 R C a 1 ) q 2 ρ T o t a l

Metrics