Abstract

Negative phase advance through a single layer of near-IR negative index metamaterial (NIM) is identified through interferometric measurements. The NIM unit cell, sub-wavelength in both the lateral and light propagation directions, is comprised of a pair of Au strips separated by two dielectric and one Au film. Numerical simulations show that the negative phase advance through the single-layer sample is consistent with the negative index exhibited by a bulk material comprised of multiple layers of the same structure. We also numerically demonstrate that the negative index band persists in the lossless limit.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  2. S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [CrossRef] [PubMed]
  3. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [CrossRef]
  4. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [CrossRef]
  5. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  6. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
    [CrossRef] [PubMed]
  7. B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
    [CrossRef]
  8. E. Pshenay-Severin, F. Setzpfandt, C. Helgert, U. Hubner, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, and T. Pertsch, “Experimental determination of the dispersion relation of light in metamaterials by white-light interferometry,” J. Opt. Soc. Am. B 27(4), 660–666 (2010).
    [CrossRef]
  9. Y. A. Urzhumov and G. Shvets, “Optical magnetism and negative refraction in plasmonic metamaterials,” Solid State Commun. 146(5-6), 208–220 (2008).
    [CrossRef]
  10. C. M. Soukoulis, J. F. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
    [CrossRef]
  11. X. H. Zhang, M. Davanço, Y. Urzhumov, G. Shvets, and S. R. Forrest, “From scattering parameters to Snell’s law: a subwavelength near-infrared negative-index metamaterial,” Phys. Rev. Lett. 101(26), 267401 (2008).
    [CrossRef] [PubMed]
  12. X. H. Zhang, M. Davanco, Y. Urzhumov, G. Shvets, and S. R. Forrest, “A Subwavelength Near-Infrared Negative-Index Material,” Appl. Phys. Lett. 94(13), 131107 (2009).
    [CrossRef]
  13. J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88(22), 221103 (2006).
    [CrossRef]
  14. V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11164–11177 (2006).
    [CrossRef] [PubMed]
  15. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 036610 (2001).
    [CrossRef] [PubMed]
  16. E. D. Palik, Handbook of optical constants of solids (Academic Press, Orlando, 1985).
  17. V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3(1), 49–55 (2006).
    [CrossRef]
  18. G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8(4), S122–S130 (2006).
    [CrossRef]
  19. M. Davanço, Y. Urzhumov, and G. Shvets, “The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction,” Opt. Express 15(15), 9681–9691 (2007).
    [CrossRef] [PubMed]
  20. Z. F. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 026610 (2009).
    [CrossRef] [PubMed]
  21. J. A. Kong, Electromagnetic Wave Theory (EMW, Cambridge, MA, 2008).
  22. X. H. Zhang and S. R. Forrest, “Generalized phase matching condition for lossy periodic photonic structures,” Opt. Express 18(2), 1151–1158 (2010).
    [CrossRef] [PubMed]

2010 (2)

2009 (3)

Z. F. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 026610 (2009).
[CrossRef] [PubMed]

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

X. H. Zhang, M. Davanco, Y. Urzhumov, G. Shvets, and S. R. Forrest, “A Subwavelength Near-Infrared Negative-Index Material,” Appl. Phys. Lett. 94(13), 131107 (2009).
[CrossRef]

2008 (4)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Y. A. Urzhumov and G. Shvets, “Optical magnetism and negative refraction in plasmonic metamaterials,” Solid State Commun. 146(5-6), 208–220 (2008).
[CrossRef]

C. M. Soukoulis, J. F. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

X. H. Zhang, M. Davanço, Y. Urzhumov, G. Shvets, and S. R. Forrest, “From scattering parameters to Snell’s law: a subwavelength near-infrared negative-index metamaterial,” Phys. Rev. Lett. 101(26), 267401 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (5)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3(1), 49–55 (2006).
[CrossRef]

G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8(4), S122–S130 (2006).
[CrossRef]

J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88(22), 221103 (2006).
[CrossRef]

V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11164–11177 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

2001 (1)

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 036610 (2001).
[CrossRef] [PubMed]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Aydin, K.

Z. F. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 026610 (2009).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Bertolotti, M.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 036610 (2001).
[CrossRef] [PubMed]

Bloemer, M. J.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 036610 (2001).
[CrossRef] [PubMed]

Bowden, C. M.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 036610 (2001).
[CrossRef] [PubMed]

Brueck, S. R. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Cai, W.

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3(1), 49–55 (2006).
[CrossRef]

Cai, W. S.

Centini, M.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 036610 (2001).
[CrossRef] [PubMed]

Chettiar, U.

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3(1), 49–55 (2006).
[CrossRef]

Chettiar, U. K.

Chipouline, A.

D’Aguanno, G.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 036610 (2001).
[CrossRef] [PubMed]

Davanco, M.

X. H. Zhang, M. Davanco, Y. Urzhumov, G. Shvets, and S. R. Forrest, “A Subwavelength Near-Infrared Negative-Index Material,” Appl. Phys. Lett. 94(13), 131107 (2009).
[CrossRef]

Davanço, M.

X. H. Zhang, M. Davanço, Y. Urzhumov, G. Shvets, and S. R. Forrest, “From scattering parameters to Snell’s law: a subwavelength near-infrared negative-index metamaterial,” Phys. Rev. Lett. 101(26), 267401 (2008).
[CrossRef] [PubMed]

M. Davanço, Y. Urzhumov, and G. Shvets, “The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction,” Opt. Express 15(15), 9681–9691 (2007).
[CrossRef] [PubMed]

de Lustrac, A.

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Drachev, V. P.

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3(1), 49–55 (2006).
[CrossRef]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Economou, E. N.

C. M. Soukoulis, J. F. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Fainman, Y.

Fan, W. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Forrest, S. R.

X. H. Zhang and S. R. Forrest, “Generalized phase matching condition for lossy periodic photonic structures,” Opt. Express 18(2), 1151–1158 (2010).
[CrossRef] [PubMed]

X. H. Zhang, M. Davanco, Y. Urzhumov, G. Shvets, and S. R. Forrest, “A Subwavelength Near-Infrared Negative-Index Material,” Appl. Phys. Lett. 94(13), 131107 (2009).
[CrossRef]

X. H. Zhang, M. Davanço, Y. Urzhumov, G. Shvets, and S. R. Forrest, “From scattering parameters to Snell’s law: a subwavelength near-infrared negative-index metamaterial,” Phys. Rev. Lett. 101(26), 267401 (2008).
[CrossRef] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Haus, J. W.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 036610 (2001).
[CrossRef] [PubMed]

Helgert, C.

Hubner, U.

Kafesaki, M.

C. M. Soukoulis, J. F. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

Kanté, B.

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

Kildishev, A. V.

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3(1), 49–55 (2006).
[CrossRef]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Klimeck, G.

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3(1), 49–55 (2006).
[CrossRef]

Koschny, T.

C. M. Soukoulis, J. F. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88(22), 221103 (2006).
[CrossRef]

Lederer, F.

Li, Z. F.

Z. F. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 026610 (2009).
[CrossRef] [PubMed]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Lomakin, V.

Lourtioz, J. M.

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

Malloy, K. J.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Menzel, C.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Osgood, R. M.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Ozbay, E.

Z. F. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 026610 (2009).
[CrossRef] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Pertsch, T.

Pshenay-Severin, E.

Rockstuhl, C.

Sarychev, A. K.

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3(1), 49–55 (2006).
[CrossRef]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Scalora, M.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 036610 (2001).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Setzpfandt, F.

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3(1), 49–55 (2006).
[CrossRef]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Shvets, G.

X. H. Zhang, M. Davanco, Y. Urzhumov, G. Shvets, and S. R. Forrest, “A Subwavelength Near-Infrared Negative-Index Material,” Appl. Phys. Lett. 94(13), 131107 (2009).
[CrossRef]

Y. A. Urzhumov and G. Shvets, “Optical magnetism and negative refraction in plasmonic metamaterials,” Solid State Commun. 146(5-6), 208–220 (2008).
[CrossRef]

X. H. Zhang, M. Davanço, Y. Urzhumov, G. Shvets, and S. R. Forrest, “From scattering parameters to Snell’s law: a subwavelength near-infrared negative-index metamaterial,” Phys. Rev. Lett. 101(26), 267401 (2008).
[CrossRef] [PubMed]

M. Davanço, Y. Urzhumov, and G. Shvets, “The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction,” Opt. Express 15(15), 9681–9691 (2007).
[CrossRef] [PubMed]

G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8(4), S122–S130 (2006).
[CrossRef]

V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11164–11177 (2006).
[CrossRef] [PubMed]

Sibilia, C.

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 036610 (2001).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis, J. F. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88(22), 221103 (2006).
[CrossRef]

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Tunnermann, A.

Tuttle, G.

J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88(22), 221103 (2006).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Urzhumov, Y.

X. H. Zhang, M. Davanco, Y. Urzhumov, G. Shvets, and S. R. Forrest, “A Subwavelength Near-Infrared Negative-Index Material,” Appl. Phys. Lett. 94(13), 131107 (2009).
[CrossRef]

X. H. Zhang, M. Davanço, Y. Urzhumov, G. Shvets, and S. R. Forrest, “From scattering parameters to Snell’s law: a subwavelength near-infrared negative-index metamaterial,” Phys. Rev. Lett. 101(26), 267401 (2008).
[CrossRef] [PubMed]

M. Davanço, Y. Urzhumov, and G. Shvets, “The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction,” Opt. Express 15(15), 9681–9691 (2007).
[CrossRef] [PubMed]

V. Lomakin, Y. Fainman, Y. Urzhumov, and G. Shvets, “Doubly negative metamaterials in the near infrared and visible regimes based on thin film nanocomposites,” Opt. Express 14(23), 11164–11177 (2006).
[CrossRef] [PubMed]

Urzhumov, Y. A.

Y. A. Urzhumov and G. Shvets, “Optical magnetism and negative refraction in plasmonic metamaterials,” Solid State Commun. 146(5-6), 208–220 (2008).
[CrossRef]

G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8(4), S122–S130 (2006).
[CrossRef]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Yuan, H. K.

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3(1), 49–55 (2006).
[CrossRef]

V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
[CrossRef]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, L.

J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88(22), 221103 (2006).
[CrossRef]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, X. H.

X. H. Zhang and S. R. Forrest, “Generalized phase matching condition for lossy periodic photonic structures,” Opt. Express 18(2), 1151–1158 (2010).
[CrossRef] [PubMed]

X. H. Zhang, M. Davanco, Y. Urzhumov, G. Shvets, and S. R. Forrest, “A Subwavelength Near-Infrared Negative-Index Material,” Appl. Phys. Lett. 94(13), 131107 (2009).
[CrossRef]

X. H. Zhang, M. Davanço, Y. Urzhumov, G. Shvets, and S. R. Forrest, “From scattering parameters to Snell’s law: a subwavelength near-infrared negative-index metamaterial,” Phys. Rev. Lett. 101(26), 267401 (2008).
[CrossRef] [PubMed]

Zhou, J. F.

C. M. Soukoulis, J. F. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88(22), 221103 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

X. H. Zhang, M. Davanco, Y. Urzhumov, G. Shvets, and S. R. Forrest, “A Subwavelength Near-Infrared Negative-Index Material,” Appl. Phys. Lett. 94(13), 131107 (2009).
[CrossRef]

J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, “Experimental demonstration of negative index of refraction,” Appl. Phys. Lett. 88(22), 221103 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8(4), S122–S130 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

C. M. Soukoulis, J. F. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20(30), 304217 (2008).
[CrossRef]

Laser Phys. Lett. (1)

V. P. Drachev, W. Cai, U. Chettiar, H. K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, “Experimental verification of an optical negative-index material,” Laser Phys. Lett. 3(1), 49–55 (2006).
[CrossRef]

Nat. Photonics (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

B. Kanté, J. M. Lourtioz, and A. de Lustrac, “Infrared metafilms on a dielectric substrate,” Phys. Rev. B 80(20), 205120 (2009).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(3), 036610 (2001).
[CrossRef] [PubMed]

Z. F. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(2), 026610 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

X. H. Zhang, M. Davanço, Y. Urzhumov, G. Shvets, and S. R. Forrest, “From scattering parameters to Snell’s law: a subwavelength near-infrared negative-index metamaterial,” Phys. Rev. Lett. 101(26), 267401 (2008).
[CrossRef] [PubMed]

Science (1)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Solid State Commun. (1)

Y. A. Urzhumov and G. Shvets, “Optical magnetism and negative refraction in plasmonic metamaterials,” Solid State Commun. 146(5-6), 208–220 (2008).
[CrossRef]

Other (2)

J. A. Kong, Electromagnetic Wave Theory (EMW, Cambridge, MA, 2008).

E. D. Palik, Handbook of optical constants of solids (Academic Press, Orlando, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Profile of the NIM sample fabricated on a glass substrate. Period Ly = L = 150nm, Au strip and central layer thicknesses t = 22nm, strip width W = 105nm, ht = 15nm and hb = 9nm for the top and bottom polymer dielectric (cyclotene, BCB) spacer layers.

Fig. 2
Fig. 2

Schematic of the polarization interferometer (top view). The light propagates from left to right. P1 and P2 are parallel oriented polarizers positioned 45 to the vertical, LC PM is a liquid crystal phase modulator, and PD is a photodiode. The two orthogonal polarization states (TE indicated by the arrows and TM indicated by dots) are in phase after polarizer P1, and experience different phase advances through the NIM sample and the liquid crystal phase modulator, as represented schematically by different positions of their phase fronts along the beam path.

Fig. 3
Fig. 3

(a) Photodiode voltage Vpd as a function of the liquid crystal (LC) drive voltage at λ = 886nm for an unstructured gold sample block used as a reference. (b) The wrapped phase as a function of LC drive voltage for the reference. (c) The unwrapped phase as a function of LC drive voltage for the reference. (d) Vpd as a function of the LC drive voltage for a NIM sample block.

Fig. 4
Fig. 4

(a) Measured relative phase shift Δ φ = φ T M φ T E for two sample blocks fabricated on the same substrate with identically designed structure (open symbols). Calculated φ T M , φ T E , and Δ φ , obtained from normal incidence plane wave scattering simulations assuming the sample in Fig. 1, are also plotted (lines). (b) Phase advance per unit cell for TM electromagnetic waves derived from the band structure using φ T M = Re ( k x ) L , as well as those from scattering simulations. Here, φ is the phase advance per unit cell, k x is the wave vector in the x ^ -direction. Inset: the complete unit cell with structural parameters in Fig. 1 and additional capping dielectric layers, whose periods Lx = Ly = L = 150nm.

Fig. 5
Fig. 5

Effective (a) index (nx ) (b) magnetoelectric coupling coefficient (ξ0 ) (c) permittivity (εy ) (d) permeability (μz ) calculated for our structure assuming 10% Au loss. The shaded region corresponds to the negative index band.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

V p d = E T M 2 + E T E 2 2 + E T M E T E cos ( φ L C + φ 0 ) ,
V p d max , V p d min E T M 2 + E T E 2 2 ± E T M E T E .
cos ( φ L C + φ 0 ) = 1 Δ V ( V p d V c ) ,
t = 4 i Γ ( 1 + i Γ ) 2 e Γ D k 0 ( 1 i Γ ) 2 e Γ D k 0 ,
t 4 / Γ exp ( i π / 2 + i 2 / Γ Γ D k 0 ) .

Metrics