Abstract

In this paper, we describe the design, modeling, fabrication, and optical characterization of the first micropolarimeter array enabling full Stokes polarization imaging in visible spectrum. The proposed micropolarimeter is fabricated by patterning a liquid-crystal (LC) layer on top of a visible-regime metal-wire-grid polarizer (MWGP) using ultraviolet sensitive sulfonic-dye-1 as the LC photoalignment material. This arrangement enables the formation of either micrometer-scale LC polarization rotators, neutral density filters or quarter wavelength retarders. These elements are in turn exploited to acquire all components of the Stokes vector, which describes all possible polarization states of light. Reported major principal transmittance of 75% and extinction ratio of 1100 demonstrate that the MWGP’s superior optical characteristics are retained. The proposed liquid-crystal micropolarimeter array can be integrated on top of a complementary metal-oxide-semiconductor (CMOS) image sensor for real-time full Stokes polarization imaging.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Giakos, “Multifusion, Multispectral, Optical Polarimetric Imaging Sensing Principles,” IEEE Trans. Instrum. Meas. 55, 1628–1633 (2006).
    [CrossRef]
  2. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [CrossRef] [PubMed]
  3. M. P. Rowe, E. N. Pugh, Jr., J. Scott Tyo, and N. Engheta, “Polarization-difference imaging: a biologically inspired technique for imaging in scattering media,” Opt. Lett. 20, 608–610 (1995).
    [CrossRef] [PubMed]
  4. S. Lin, K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, “Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A 23, 2137–2152 (2006).
    [CrossRef]
  5. G. D. Gilbert and J. C. Pernicka, “Improvement of underwater visibility by reduction of backscatter with a circular polarization technique,” Appl. Opt. 6, 741–746 (1967).
    [CrossRef] [PubMed]
  6. G. D. Gilbert, “The effects of particle size on contrast improvement by polarization discrimination for underwater targets,” Appl. Opt. 9, 421–428 (1970).
    [CrossRef] [PubMed]
  7. J. D. Barter, H. R. Thompson, Jr., and C. L. Richardson, “Visible-regime polarimetric imager: a fully polarimetric, real-time imaging system,” Appl. Opt. 42, 1620–1628 (2003).
    [CrossRef] [PubMed]
  8. J. D. Barter and P. H. Y. Lee, “Visible Stokes polarimetric imager,” U.S. Patent 6,122,404 (2000).
  9. F. Goudail, P. Terrier, Y. Takakura, L. Bigue, F. Galland, and V. DeVlaminck, “Target detection with a liquidcrystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274–282 (2004).
    [CrossRef] [PubMed]
  10. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45, 5470–5478 (2006).
    [CrossRef] [PubMed]
  11. A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
    [CrossRef]
  12. . S. M. Faris, “Methods for manufacturing micropolarizers,” U.S. Patent 5,327,285 (1994).
  13. V. Gruev, A. Ortu, N. Lazarus, J. Van de Spiegel, and N. Engheta, “Fabrication of a Dual-Tier Thin Film Micro Polarization Array,” Opt. Express 15, 4994–5007 (2007).
    [CrossRef] [PubMed]
  14. V. Gruev, J. V. Spiegel, and N. Engheta, “Image SensorWith Focal Plane Polarization Sensitivity,” in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1028–1031 (2008).
  15. J. Guo and D. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39, 1486–1492 (2000).
    [CrossRef]
  16. M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neur. Netw. 17, 222–232 (2006).
    [CrossRef]
  17. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41, 1291–1296 (2002).
    [CrossRef] [PubMed]
  18. X. Zhao, A. Bermak, F. Boussaid, T. Du, and V. G. Chigrinov, “High-resolution photoaligned liquid-crystal micropolarizer array for polarization imaging in visible spectrum,” Opt. Lett. 34, 3619–3621 (2009).
    [CrossRef] [PubMed]
  19. D. Goldstein, Polarized Light (Marcel Dekker, New York, 2003).
    [CrossRef]
  20. S. T. Tang and H. S. Kwok, “Characteristic parameters of liquid crystal cells and their measurements,” J. Display Technol. 2, 26–31 (2006).
    [CrossRef]
  21. V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321–1327 (2002).
    [CrossRef]
  22. . http://www.moxtek.com/optics/visible_light.html

2009 (1)

2007 (1)

2006 (6)

2004 (1)

2003 (1)

2002 (3)

A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[CrossRef]

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321–1327 (2002).
[CrossRef]

C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41, 1291–1296 (2002).
[CrossRef] [PubMed]

2000 (1)

1995 (1)

1970 (1)

1967 (1)

Akiyama, H.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321–1327 (2002).
[CrossRef]

Andreou, A. G.

A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[CrossRef]

Barter, J. D.

Bermak, A.

Bigue, L.

Boussaid, F.

Brady, D.

Chenault, D. B.

Chigrinov, V.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321–1327 (2002).
[CrossRef]

Chigrinov, V. G.

Craighead, H. G.

DeVlaminck, V.

Du, T.

Engheta, N.

Galland, F.

Giakos, G. C.

G. C. Giakos, “Multifusion, Multispectral, Optical Polarimetric Imaging Sensing Principles,” IEEE Trans. Instrum. Meas. 55, 1628–1633 (2006).
[CrossRef]

Gilbert, G. D.

Goldstein, D. L.

Goudail, F.

Gruev, V.

Guo, J.

Harnett, C. K.

Kalayjian, Z. K.

A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[CrossRef]

Kawara, T.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321–1327 (2002).
[CrossRef]

Kozenkov, V.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321–1327 (2002).
[CrossRef]

Kwok, H.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321–1327 (2002).
[CrossRef]

Kwok, H. S.

Lazarus, N.

Lin, S.

Momeni, M.

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neur. Netw. 17, 222–232 (2006).
[CrossRef]

Ortu, A.

Pernicka, J. C.

Prudnikova, E.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321–1327 (2002).
[CrossRef]

Pugh, E. N.

Pust, N. J.

Richardson, C. L.

Rowe, M. P.

Shaw, J. A.

Takada, H.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321–1327 (2002).
[CrossRef]

Takakura, Y.

Takatsu, H.

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321–1327 (2002).
[CrossRef]

Tang, S. T.

Terrier, P.

Thompson, H. R.

Titus, A. H.

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neur. Netw. 17, 222–232 (2006).
[CrossRef]

Tyo, J. S.

Van de Spiegel, J.

Yemelyanov, K. M.

Zhao, X.

Appl. Opt. (8)

IEEE Sens. J. (1)

A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2, 566–576 (2002).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

G. C. Giakos, “Multifusion, Multispectral, Optical Polarimetric Imaging Sensing Principles,” IEEE Trans. Instrum. Meas. 55, 1628–1633 (2006).
[CrossRef]

IEEE Trans. Neur. Netw. (1)

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neur. Netw. 17, 222–232 (2006).
[CrossRef]

J. Display Technol. (1)

J. Opt. Soc. Am. A (1)

Liq. Cryst. (1)

V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321–1327 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (5)

D. Goldstein, Polarized Light (Marcel Dekker, New York, 2003).
[CrossRef]

. http://www.moxtek.com/optics/visible_light.html

J. D. Barter and P. H. Y. Lee, “Visible Stokes polarimetric imager,” U.S. Patent 6,122,404 (2000).

V. Gruev, J. V. Spiegel, and N. Engheta, “Image SensorWith Focal Plane Polarization Sensitivity,” in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1028–1031 (2008).

. S. M. Faris, “Methods for manufacturing micropolarizers,” U.S. Patent 5,327,285 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

CMOS polarization image sensor architecture with integrated LCMP array for full Stokes polarization imaging.

Fig. 2.
Fig. 2.

Relationship between the LC Mueller matrix elements and the LC twist angle ϕ: (A) D versus ϕ; (B) E versus ϕ; (C) F versus ϕ.

Fig. 3.
Fig. 3.

Top view and cross-sections of the proposed CMOS polarization image sensor’s “superpixel” consisting of four LCMPs: LCMP 45°twisted , LCMP −45°twisted , LCMP E−field and LCMPUntwisted .

Fig. 4.
Fig. 4.

(A) Cross-section of proposed CMOS polarization image sensor with integrated LCMP array; (B) fabricated LCMP array with the second substrate as “dummy” CMOS imager substrate to enable LCMPs’ optical characterization (CMOS imager substrate is opaque).

Fig. 5.
Fig. 5.

Microphotographs of a fabricated LCMP array illuminated by linearly or circularly polarized input: (A) 0° linearly polarized; (B) 90° linearly polarized; (C) −45° linearly polarized; (D) right-handed circularly polarized; (E) left-handed circularly polarized.

Fig. 6.
Fig. 6.

(A) Malus measurement results of LCMP 45°twisted ; (B) Malus measurement results of LCMP −45°twisted ; (C) Malus measurement results of LCMPE−field ; (D) spectral measurement results of LCMPUntwisted .

Tables (2)

Tables Icon

Table 1. Extinction ratios of different LCMPs

Tables Icon

Table 2. Comparison between experimentally extracted Stokes parameters and ideal values for different polarized inputs

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

M LC = [ 1 0 0 0 0 A B C 0 D E F 0 G H K ]
M LCnoE field = [ 1 0 0 0 0 1 2 ( c 2 + d 2 ) 2 ( bd ac ) 2 ( ad + bc ) 0 2 ( ac + bd ) 1 2 ( b 2 + c 2 ) 2 ( ab cd ) 0 2 ( ad bc ) 2 ( ab + cd ) 1 2 ( b 2 + d 2 ) ]
a = cos ( ϕ ) · cos ( χ ) + ϕ χ · sin ( ϕ ) · sin ( χ )
b = δ χ · cos ( ϕ ) · sin ( χ )
c = sin ( ϕ ) · cos ( χ ) ϕ χ · cos ( ϕ ) · sin ( χ )
d = δ χ · sin ( ϕ ) · sin ( χ )
χ 2 = ϕ 2 + δ 2
δ = π λ · Δ n ( λ ) · d
M linear = 1 2 [ 1 cos 2 θ sin 2 θ 0 cos 2 θ cos 2 2 θ sin 2 θ · cos 2 θ 0 sin 2 θ sin 2 θ · cos 2 θ sin 2 2 θ 0 0 0 0 0 ]
[ S 0 S 1 S 2 S 3 ] = M linear · [ S 0 S 1 S 2 S 3 ] = M linear · M LC · [ S 0 S 1 S 2 S 3 ]
S 0 = I ( θ , ϕ , δ ) = 0.5 ( S 0 + J · S 1 + L · S 2 + N · S 3 )
{ J = A · cos 2 θ + D · sin 2 θ L = B · cos 2 θ + E · sin 2 θ N = C · cos 2 θ + F · sin 2 θ
{ I 1 = 0.5 ( S 0 + J 1 · S 1 + L 1 · S 2 + N 1 · S 3 ) I 2 = 0.5 ( S 0 + J 2 · S 1 + L 2 · S 2 + N 2 · S 3 ) I 3 = 0.5 ( S 0 + J 3 · S 1 + L 3 · S 2 + N 3 · S 3 ) I 4 = 0.5 ( S 0 + J 4 · S 1 + L 4 · S 2 + N 4 · S 3 )
S 0 = I ( ϕ , δ ) = 0.5 ( S 0 + D · S 1 + E · S 2 + F · S 3 )
2 δ = π 2 + 2 m π or δ = π 4 + m π
[ D 1 E 1 F 1 D 2 E 2 F 2 D 3 E 3 F 3 D 4 E 4 F 4 ] = [ 0.9867 0.1100 0.1193 0.9867 0.1100 0.1193 0.0000 0.0000 1.0000 0.0000 1.0000 0.0000 ]

Metrics