Abstract

We present experimental results on nonlinear, ultra-low power photonics applications based on a silica whispering-gallery-mode microresonator. Our bottle microresonator combines an ultrahigh quality factor of Q > 108 with a small mode volume V. The resulting Q 2/V-ratio is among the highest realized for optical microresonators and allows us to observe bistable behavior at very low powers. We report single-wavelength all-optical switching via the Kerr effect at a record-low threshold of 50 µW. Moreover, an advantageous mode geometry enables the coupling of two tapered fiber waveguides to a bottle mode in an add-drop configuration. This allows us to route a CW optical signal between both fiber outputs with high efficiency by varying its power level. Finally, we demonstrate that the same set-up can also be operated as an optical memory.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef] [PubMed]
  2. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
    [CrossRef]
  3. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
    [CrossRef]
  4. V. Sandoghdar, F. Treussart, J. Hare, V. Lef`evre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
    [CrossRef] [PubMed]
  5. W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef`evre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semiclass. Opt. 2, 204–206 (2000).
    [CrossRef]
  6. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
    [CrossRef]
  7. D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
    [CrossRef]
  8. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
    [CrossRef] [PubMed]
  9. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
    [CrossRef]
  10. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [CrossRef] [PubMed]
  11. M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29, 8–10 (2004).
    [CrossRef] [PubMed]
  12. Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72, 031801(R) (2005).
    [CrossRef]
  13. G. S. Murugan, J. S. Wilkinson, and M. N. Zervas, “Selective excitation of whispering gallery modes in a novel bottle microresonator,” Opt. Express 17, 11916–11925 (2009).
    [CrossRef]
  14. M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
    [CrossRef] [PubMed]
  15. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [CrossRef] [PubMed]
  16. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000).
    [CrossRef] [PubMed]
  17. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef] [PubMed]
  18. T. A. Ibrahim, V. Van, and P.-T. Ho, “All-optical time-division demultiplexing and spatial pulserouting with a GaAs/AlGaAs microring resonator,” Opt. Lett. 27, 803–805 (2002).
    [CrossRef]
  19. S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
    [CrossRef]
  20. V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery-modes - part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
    [CrossRef]
  21. K. Vahala, Optical microcavities (World Scientific, 2004).
    [CrossRef]
  22. J. Heebner, R. Grover, and T. A. Ibrahim, Optical microresonators (Springer, 2008).
  23. H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92, 253905 (2004).
    [CrossRef] [PubMed]
  24. A. J. Taylor, G. Rodriguez, and T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett. 21, 1812–1814 (1996).
    [CrossRef] [PubMed]
  25. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Sp¨alter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).
    [CrossRef]
  26. K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. H¨orhold, “Nonlinear prism coupling of waveguides of the conjugated polymerMEH-PPV and their figures of merit for all-optical switching,” Opt. Soc. Am. B 19, 895–901 (2002).
    [CrossRef]
  27. J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
    [CrossRef]
  28. T. Carmon, T. Kippenberg, L. Yang, H. Rokhsari, S. Spillane, and K. Vahala, “Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators,” Opt. Express 13, 3558-3566 (2005).
    [CrossRef] [PubMed]
  29. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
    [CrossRef]
  30. V. S. Il’chenko, M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).
  31. F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, and V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
    [CrossRef]
  32. H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30, 427–429 (2005).
    [CrossRef] [PubMed]
  33. H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14, 1118–1120 (2002).
    [CrossRef]
  34. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, and E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678-2687 (2005).
    [CrossRef] [PubMed]
  35. E. Weidner, S. Combrie, A. de Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90, 101118 (2007).
    [CrossRef]
  36. L.-D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express 17, 21108–21117 (2009).
    [CrossRef] [PubMed]
  37. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
    [CrossRef] [PubMed]
  38. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [CrossRef] [PubMed]
  39. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
    [CrossRef]
  40. T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon Technol. Lett. 15, 36–38 (2003).
    [CrossRef]
  41. N. Peychambarian and H. M. Gibbs, “Optical nonlinearity, bistability, and signal processing in semiconductors,” J. Opt. Soc. Am. B 2, 1215–1227 (1985).
    [CrossRef]
  42. J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. SpringThorpe, “Alloptical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
    [CrossRef]
  43. J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769–771 (2004).
    [CrossRef] [PubMed]
  44. P. R. Berman, Cavity quantum electrodynamics (Academic Press, 1994).
  45. P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2008).
    [CrossRef]
  46. D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Physics 3, 807–812 (2007).
    [CrossRef]
  47. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
    [CrossRef]

2009 (3)

2008 (1)

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2008).
[CrossRef]

2007 (4)

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Physics 3, 807–812 (2007).
[CrossRef]

E. Weidner, S. Combrie, A. de Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

2006 (3)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[CrossRef]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery-modes - part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[CrossRef]

2005 (3)

2004 (6)

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92, 253905 (2004).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[CrossRef]

M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29, 8–10 (2004).
[CrossRef] [PubMed]

J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769–771 (2004).
[CrossRef] [PubMed]

2003 (4)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon Technol. Lett. 15, 36–38 (2003).
[CrossRef]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[CrossRef]

2002 (5)

H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14, 1118–1120 (2002).
[CrossRef]

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. H¨orhold, “Nonlinear prism coupling of waveguides of the conjugated polymerMEH-PPV and their figures of merit for all-optical switching,” Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

T. A. Ibrahim, V. Van, and P.-T. Ho, “All-optical time-division demultiplexing and spatial pulserouting with a GaAs/AlGaAs microring resonator,” Opt. Lett. 27, 803–805 (2002).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[CrossRef]

2000 (4)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef`evre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semiclass. Opt. 2, 204–206 (2000).
[CrossRef]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
[CrossRef]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Sp¨alter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).
[CrossRef]

1999 (1)

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

1998 (2)

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, and V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[CrossRef]

1997 (1)

1996 (2)

A. J. Taylor, G. Rodriguez, and T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett. 21, 1812–1814 (1996).
[CrossRef] [PubMed]

V. Sandoghdar, F. Treussart, J. Hare, V. Lef`evre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

1993 (1)

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. SpringThorpe, “Alloptical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[CrossRef]

1992 (1)

V. S. Il’chenko, M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

1985 (1)

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Aggarwal, I. D.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
[CrossRef] [PubMed]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

Bahtiar, A.

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. H¨orhold, “Nonlinear prism coupling of waveguides of the conjugated polymerMEH-PPV and their figures of merit for all-optical switching,” Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Bermel, P.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2008).
[CrossRef]

Best, A.

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. H¨orhold, “Nonlinear prism coupling of waveguides of the conjugated polymerMEH-PPV and their figures of merit for all-optical switching,” Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

Birks, T. A.

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Boyd, R. W.

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

Bubeck, C.

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. H¨orhold, “Nonlinear prism coupling of waveguides of the conjugated polymerMEH-PPV and their figures of merit for all-optical switching,” Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

Buck, J. R.

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[CrossRef]

Cada, M.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. SpringThorpe, “Alloptical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[CrossRef]

Cai, M.

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
[CrossRef]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Cao, W.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon Technol. Lett. 15, 36–38 (2003).
[CrossRef]

Carmon, T.

Chang, D. E.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Physics 3, 807–812 (2007).
[CrossRef]

Cheong, S.-W.

Cheung, G.

Chu, S. T.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

Clement, T. S.

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

Demler, E. A.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Physics 3, 807–812 (2007).
[CrossRef]

Dupertuis, M.-A.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. SpringThorpe, “Alloptical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[CrossRef]

Fitrilawati, F.

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. H¨orhold, “Nonlinear prism coupling of waveguides of the conjugated polymerMEH-PPV and their figures of merit for all-optical switching,” Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

Furusawa, A.

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Georgiades, N. Ph.

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Gibbs, H. M.

Goldhar, J.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon Technol. Lett. 15, 36–38 (2003).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Gorodetskii, M. L.

V. S. Il’chenko, M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

Goutev, N.

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. H¨orhold, “Nonlinear prism coupling of waveguides of the conjugated polymerMEH-PPV and their figures of merit for all-optical switching,” Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

Grover, R.

J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769–771 (2004).
[CrossRef] [PubMed]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

H¨orhold, H.-H.

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. H¨orhold, “Nonlinear prism coupling of waveguides of the conjugated polymerMEH-PPV and their figures of merit for all-optical switching,” Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

Hare, J.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef`evre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semiclass. Opt. 2, 204–206 (2000).
[CrossRef]

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, and V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lef`evre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Haret, L.-D.

Haroche, S.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef`evre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semiclass. Opt. 2, 204–206 (2000).
[CrossRef]

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, and V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lef`evre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

He, J.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. SpringThorpe, “Alloptical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[CrossRef]

Heebner, J. E.

Ho, P.-T.

J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769–771 (2004).
[CrossRef] [PubMed]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon Technol. Lett. 15, 36–38 (2003).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

T. A. Ibrahim, V. Van, and P.-T. Ho, “All-optical time-division demultiplexing and spatial pulserouting with a GaAs/AlGaAs microring resonator,” Opt. Lett. 27, 803–805 (2002).
[CrossRef]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

Hwang, H. Y.

Ibrahim, T. A.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon Technol. Lett. 15, 36–38 (2003).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

T. A. Ibrahim, V. Van, and P.-T. Ho, “All-optical time-division demultiplexing and spatial pulserouting with a GaAs/AlGaAs microring resonator,” Opt. Lett. 27, 803–805 (2002).
[CrossRef]

Il’chenko, V. S.

V. S. Il’chenko, M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Ilchenko, V. S.

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery-modes - part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[CrossRef]

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, and V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[CrossRef]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

Jacques, F.

Jahier, E.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef`evre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semiclass. Opt. 2, 204–206 (2000).
[CrossRef]

Joannopoulos, J. D.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2008).
[CrossRef]

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Johnson, S. G.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2008).
[CrossRef]

Kaneko, T.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

Katsufuji, T.

Kim, Y.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon Technol. Lett. 15, 36–38 (2003).
[CrossRef]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[CrossRef]

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

Kippenberg, T.

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[CrossRef]

Kira, G.

Knight, J. C.

Kokubun, Y.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

Koynov, K.

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. H¨orhold, “Nonlinear prism coupling of waveguides of the conjugated polymerMEH-PPV and their figures of merit for all-optical switching,” Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

Kuramochi, E.

Laine, J.-P.

H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14, 1118–1120 (2002).
[CrossRef]

Lane, P. A.

H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14, 1118–1120 (2002).
[CrossRef]

Lee, C. H.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon Technol. Lett. 15, 36–38 (2003).
[CrossRef]

Lef`evre-Seguin, V.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef`evre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semiclass. Opt. 2, 204–206 (2000).
[CrossRef]

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, and V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lef`evre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Lenz, G.

Lepeshkin, N. N.

Li, J.

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon Technol. Lett. 15, 36–38 (2003).
[CrossRef]

Lines, M. E.

Lipson, M.

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Lissillour, F.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef`evre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semiclass. Opt. 2, 204–206 (2000).
[CrossRef]

Little, B. E.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

Long, R.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef`evre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semiclass. Opt. 2, 204–206 (2000).
[CrossRef]

Martin, D.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. SpringThorpe, “Alloptical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[CrossRef]

Matsko, A. B.

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery-modes - part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[CrossRef]

Mitsugi, S.

Morier-Genoud, F.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. SpringThorpe, “Alloptical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[CrossRef]

Murugan, G. S.

Notomi, M.

O’Shea, D.

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef] [PubMed]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
[CrossRef]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Pan, W.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Peychambarian, N.

Pollinger, M.

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef] [PubMed]

Raimond, J.-M.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef`evre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semiclass. Opt. 2, 204–206 (2000).
[CrossRef]

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, and V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lef`evre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Rauschenbeutel, A.

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef] [PubMed]

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Roch, J.-F.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, and V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[CrossRef]

Rodriguez, A.

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2008).
[CrossRef]

Rodriguez, G.

Rokhsari, H.

Rolland, C.

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. SpringThorpe, “Alloptical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[CrossRef]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lef`evre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Sanghera, J. S.

Sato, S.

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

Schweinsberg, A.

Sercel, P. C.

Shinya, A.

Slusher, R. E.

Sorensen, A. S.

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Physics 3, 807–812 (2007).
[CrossRef]

Sp¨alter, S.

Spillane, S.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[CrossRef]

Sumetsky, M.

Tanabe, T.

Tapalian, H. C.

H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14, 1118–1120 (2002).
[CrossRef]

Taylor, A. J.

Treussart, F.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, and V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lef`evre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

Vahala, K.

Vahala, K. J.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
[CrossRef]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30, 427–429 (2005).
[CrossRef] [PubMed]

H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92, 253905 (2004).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[CrossRef]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
[CrossRef]

Van, V.

T. A. Ibrahim, V. Van, and P.-T. Ho, “All-optical time-division demultiplexing and spatial pulserouting with a GaAs/AlGaAs microring resonator,” Opt. Lett. 27, 803–805 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

Vernooy, D. W.

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

von Klitzing, W.

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef`evre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semiclass. Opt. 2, 204–206 (2000).
[CrossRef]

Warken, F.

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef] [PubMed]

Weidner, E.

E. Weidner, S. Combrie, A. de Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

Wicks, G. W.

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

Wilkinson, J. S.

Yang, L.

Zervas, M. N.

Zimmermann, J.

Appl. Phys. Lett. (3)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip,” Appl. Phys. Lett. 85, 6113–6115 (2004).
[CrossRef]

E. Weidner, S. Combrie, A. de Rossi, N. Tran, and S. Cassette, “Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity,” Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. SpringThorpe, “Alloptical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry-Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993).
[CrossRef]

Eur. Phys. J. D (1)

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, and V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1, 235–238 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes - part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006).
[CrossRef]

V. S. Ilchenko and A. B. Matsko, “Optical resonators with whispering-gallery-modes - part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

H. C. Tapalian, J.-P. Laine, and P. A. Lane, “Thermooptical switches using coated microsphere resonators,” IEEE Photon. Technol. Lett. 14, 1118–1120 (2002).
[CrossRef]

S. T. Chu, B. E. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11, 691–693 (1999).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[CrossRef]

T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P.-T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon Technol. Lett. 15, 36–38 (2003).
[CrossRef]

J. Opt. B: Quantum Semiclass. Opt. (1)

W. von Klitzing, E. Jahier, R. Long, F. Lissillour, V. Lef`evre-Seguin, J. Hare, J.-M. Raimond, and S. Haroche, “Very low threshold green lasing in microspheres by up-conversion of IR photons,” J. Opt. B: Quantum Semiclass. Opt. 2, 204–206 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

V. S. Il’chenko, M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Nature (4)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef] [PubMed]

Nature Phys. (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nature Phys. 3, 430–435 (2007).
[CrossRef]

Nature Physics (1)

D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nature Physics 3, 807–812 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (10)

A. J. Taylor, G. Rodriguez, and T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett. 21, 1812–1814 (1996).
[CrossRef] [PubMed]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Sp¨alter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000).
[CrossRef]

H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30, 427–429 (2005).
[CrossRef] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29, 2387–2389 (2004).
[CrossRef] [PubMed]

J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
[CrossRef] [PubMed]

T. A. Ibrahim, V. Van, and P.-T. Ho, “All-optical time-division demultiplexing and spatial pulserouting with a GaAs/AlGaAs microring resonator,” Opt. Lett. 27, 803–805 (2002).
[CrossRef]

M. Sumetsky, “Whispering-gallery-bottle microcavities: the three-dimensional etalon,” Opt. Lett. 29, 8–10 (2004).
[CrossRef] [PubMed]

M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[CrossRef]

J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, R. W. Boyd, R. Grover, and P.-T. Ho, “Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators,” Opt. Lett. 29, 769–771 (2004).
[CrossRef] [PubMed]

Opt. Soc. Am. B (1)

K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. H¨orhold, “Nonlinear prism coupling of waveguides of the conjugated polymerMEH-PPV and their figures of merit for all-optical switching,” Opt. Soc. Am. B 19, 895–901 (2002).
[CrossRef]

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137, 393–397 (1989).
[CrossRef]

Phys. Rev. A (4)

J. R. Buck and H. J. Kimble, “Optimal sizes of dielectric microspheres for cavity QED with strong coupling,” Phys. Rev. A 67, 033806 (2003).
[CrossRef]

D. W. Vernooy, A. Furusawa, N. Ph. Georgiades, V. S. Ilchenko, and H. J. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A 57, R2293–R2296 (1998).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lef`evre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777–R1780 (1996).
[CrossRef] [PubMed]

P. Bermel, A. Rodriguez, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2008).
[CrossRef]

Phys. Rev. Lett. (4)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator,” Phys. Rev. Lett. 103, 053901 (2009).
[CrossRef] [PubMed]

H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92, 253905 (2004).
[CrossRef] [PubMed]

Other (4)

K. Vahala, Optical microcavities (World Scientific, 2004).
[CrossRef]

J. Heebner, R. Grover, and T. A. Ibrahim, Optical microresonators (Springer, 2008).

Y. Louyer, D. Meschede, and A. Rauschenbeutel, “Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics,” Phys. Rev. A 72, 031801(R) (2005).
[CrossRef]

P. R. Berman, Cavity quantum electrodynamics (Academic Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of a bottle microresonator operated in the so-called “add-drop configuration”. The ray path corresponding to the whispering-gallery-mode is indicated by the red line. In addition to the radial confinement by continuous total internal reflection at the resonator surface, the light is confined in the axial direction by an angular momentum barrier. At the two axial turning points (called “caustics” in the following) the resonator light field can be accessed with two tapered fiber couplers. As a function of its frequency, light propagating on the “bus fiber” is selectively coupled into the resonator mode and exits the resonator through a second ultrathin fiber, referred to as the“drop fiber”.

Fig. 2.
Fig. 2.

Resonant power transfer between two tapered optical fibers coupled to the evanescent field of a bottle mode with ultra-high intrinsic quality factor. The plot shows the powers at the waists of the bus fiber P bus out (purple dots) and the drop fiber P drop out (blue dots) while the frequency of the probe laser is swept over the resonance. A loaded quality factor of Q load = 7.2×106 and a power transfer efficiency E = 0.93 was inferred by fitting a Lorentzian to both signals (red curve). The inset shows the power transfer efficiency between both fiber waists at the critical coupling point as a function of Q load. The data shows excellent agreement with the theoretical linear prediction, however, for high loaded quality factors, we observe a slight modal splitting [47], leading to an underestimation of the quality factor. Excluding the three rightmost datapoints, a fit of Eq. (4) (blue line) yields an intrinsic quality factor of Q 0 = 1.8×108. The red arrow indicates the datapoint extracted from the measurement shown in the main plot.

Fig. 3.
Fig. 3.

Optical bistability in a bottle resonator. In order to characterize the bistable behavior of bottle modes, the input power is pulsed and the laser frequency is initially detuned from resonance by δ =−1.2 Δν. (a) Response of the system to a pulse with a duration of τ pulse = 1.25 µs (green). The plot shows P in (green), P bus out (blue) and P drop out (purple). As soon as P in exceeds a certain threshold, the light is resonantly switched to the drop fiber via the Kerr effect. (b) By plotting P bus out and P drop out versus P in for the data shown in Fig. 3 (a) (identical color coding), bistable behavior is apparent for P in ranging from 1.0 to 1.8 mW.

Fig. 4.
Fig. 4.

(a) Dependence of the threshold power for optical bistability on the FWHM duration of the input pulses. This measurement was taken without the drop fiber. For pulse durations shorter than 100 µs the quasi-instantaneous Kerr effect dominates the thermo-optical effect due to the finite thermal relaxation time (~ 15 ms) of the resonator mode. “ON-OFF” switching of the transmission through the bus fiber via the Kerr effect is achieved at a threshold power of 50 µW. (b) Variation of the switching threshold as a function of the resonator bandwidth. The solid line is a square-law fit to the experimental data, confirming the quadratic dependency.

Fig. 5.
Fig. 5.

Demonstration of all-optical switching using the optical Kerr bistability in a bottle microresonator. P in (green) is varied between two levels which are located below and above the bistable regime (schematically indicated by the dashed lines) as shown in the inset. At the same time the power at the outputs of the bus fiber (blue) and the drop fiber (purple) is monitored. As soon as the input power exceeds P 1, i.e., the threshold power for optical bistability, 70 % of the incident light is transferred to the output of the drop fiber. Lowering the input power below P 2 again reverses the situation at the outputs.

Fig. 6.
Fig. 6.

Demonstration of optical memory functionality in a bottle resonator using the Kerr effect. For an input power level (green) in the bistable regime (P in = P 3, as indicated by the arrow) the power at the outputs of the bus fiber (blue) and of the drop fiber (purple) exhibits two stable states. The output state is chosen by temporarily lowering (raising) P in below (above) the bistable regime, which is schematically indicated by the dashed lines.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q load 1 = Q 0 1 + Q bus 1 + Q drop 1 = 1 ω τ 0 + 1 ω τ bus + 1 ω τ drop ,
( 1 + Q drop Q 0 ) E = 1 T ,
1 τ bus = 1 τ 0 + 1 τ drop ,
E = 1 2 Q load Q 0 .

Metrics