Abstract

Lengthening of photon storage time has been an important issue in quantum memories for long distance quantum communications utilizing quantum repeaters. Atom population transfer into an auxiliary spin state has been adapted to increase photon storage time of photon echoes. In this population transfer process phase shift to the collective atoms is inevitable, where the phase recovery condition must be multiple of 2π to satisfy rephasing mechanism. Recent adaptation of the population transfer method to atomic frequency comb (AFC) echoes [Afzelius et al., Phys. Rev. Lett. 104, 040503 (2010)], where the population transfer method is originated in a controlled reversible inhomogeneous broadening technique [Moiseev and Kroll, Phys. Rev. Lett. 87, 173601 (2001)], however, shows contradictory phenomenon violating the phase recovery condition. This contradiction in AFC is reviewed as a general case of optical locking applied to a dilute medium for an optical depth-dependent coherence leakage resulting in partial retrieval efficiency.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [CrossRef] [PubMed]
  2. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007).
    [CrossRef] [PubMed]
  3. M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247(4-6), 393–403 (2005).
    [CrossRef]
  4. M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
    [CrossRef] [PubMed]
  5. B. S. Ham, and J. Hahn, “Phase locked photon echoes for near-perfect retrieval efficiency and extended storage time,” arXiv: 0911.3869 (2009).
  6. M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
    [CrossRef] [PubMed]
  7. S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87(17), 173601 (2001).
    [CrossRef] [PubMed]
  8. B. S. Ham, “Ultralong quantum optical data storage using an optical locking technique,” Nat. Photonics 3(9), 518–522 (2009).
    [CrossRef]
  9. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
    [CrossRef] [PubMed]
  10. B. S. Ham, “Control of photon storage time using phase locking,” Opt. Express 18, 1704–1713 (2010).
    [CrossRef] [PubMed]
  11. S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B Quantum Semiclassical Opt. 5(4), S497–S502 (2003).
    [CrossRef]
  12. T. W. Mossberg, “Time-domain frequency-selective optical data storage,” Opt. Lett. 7(2), 77–79 (1982).
    [CrossRef] [PubMed]
  13. B. S. Ham, “Analysis of controlled photon storage time using phase locking by atomic population transfer,” arXiv:1004.0980.
  14. M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics 79–95 (Addison-Wesley, 1974).
    [PubMed]
  15. For reabsorption of photon echo signals seeN. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75(3), 032327 (2007).
    [CrossRef]
  16. G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100(2), 023601 (2008).
    [CrossRef] [PubMed]
  17. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
    [CrossRef] [PubMed]
  18. B. S. Ham, and J. Hahn, “Ultralong photon echo storage using optical locking,” arXiv:0912.2756.

2010

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

B. S. Ham, “Control of photon storage time using phase locking,” Opt. Express 18, 1704–1713 (2010).
[CrossRef] [PubMed]

2009

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[CrossRef] [PubMed]

B. S. Ham, “Ultralong quantum optical data storage using an optical locking technique,” Nat. Photonics 3(9), 518–522 (2009).
[CrossRef]

2008

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100(2), 023601 (2008).
[CrossRef] [PubMed]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[CrossRef] [PubMed]

2007

For reabsorption of photon echo signals seeN. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75(3), 032327 (2007).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007).
[CrossRef] [PubMed]

2005

M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247(4-6), 393–403 (2005).
[CrossRef]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

2003

S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B Quantum Semiclassical Opt. 5(4), S497–S502 (2003).
[CrossRef]

2001

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87(17), 173601 (2001).
[CrossRef] [PubMed]

1982

Afzelius, M.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[CrossRef] [PubMed]

For reabsorption of photon echo signals seeN. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75(3), 032327 (2007).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007).
[CrossRef] [PubMed]

Alexander, A. L.

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100(2), 023601 (2008).
[CrossRef] [PubMed]

Amari, A.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

Buchler, B. C.

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[CrossRef] [PubMed]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

de Riedmatten, H.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[CrossRef] [PubMed]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007).
[CrossRef] [PubMed]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Gisin, N.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007).
[CrossRef] [PubMed]

For reabsorption of photon echo signals seeN. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75(3), 032327 (2007).
[CrossRef]

Gisin, N. A.

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[CrossRef] [PubMed]

Ham, B. S.

B. S. Ham, “Control of photon storage time using phase locking,” Opt. Express 18, 1704–1713 (2010).
[CrossRef] [PubMed]

B. S. Ham, “Ultralong quantum optical data storage using an optical locking technique,” Nat. Photonics 3(9), 518–522 (2009).
[CrossRef]

S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B Quantum Semiclassical Opt. 5(4), S497–S502 (2003).
[CrossRef]

Hétet, G.

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[CrossRef] [PubMed]

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100(2), 023601 (2008).
[CrossRef] [PubMed]

Hosseini, M.

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[CrossRef] [PubMed]

Kroll, S.

M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247(4-6), 393–403 (2005).
[CrossRef]

Kröll, S.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87(17), 173601 (2001).
[CrossRef] [PubMed]

Lam, P. K.

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[CrossRef] [PubMed]

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100(2), 023601 (2008).
[CrossRef] [PubMed]

Lauritzen, B.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

Longdell, J. J.

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[CrossRef] [PubMed]

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100(2), 023601 (2008).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Minár, J.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

Moiseev, S. A.

S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B Quantum Semiclassical Opt. 5(4), S497–S502 (2003).
[CrossRef]

S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87(17), 173601 (2001).
[CrossRef] [PubMed]

Mossberg, T. W.

Nilsson, M.

M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247(4-6), 393–403 (2005).
[CrossRef]

Sangouard, N.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007).
[CrossRef] [PubMed]

For reabsorption of photon echo signals seeN. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75(3), 032327 (2007).
[CrossRef]

Sellars, M. J.

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100(2), 023601 (2008).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Simon, C.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[CrossRef] [PubMed]

For reabsorption of photon echo signals seeN. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75(3), 032327 (2007).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007).
[CrossRef] [PubMed]

Sparkes, B. M.

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[CrossRef] [PubMed]

Staudt, M. U.

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[CrossRef] [PubMed]

Tarasov, V. F.

S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B Quantum Semiclassical Opt. 5(4), S497–S502 (2003).
[CrossRef]

Usmani, I.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

Walther, A.

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

Zbinden, H.

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007).
[CrossRef] [PubMed]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

J. Opt. B Quantum Semiclassical Opt.

S. A. Moiseev, V. F. Tarasov, and B. S. Ham, “Quantum memory photon echo-like techniques in solids,” J. Opt. B Quantum Semiclassical Opt. 5(4), S497–S502 (2003).
[CrossRef]

Nat. Photonics

B. S. Ham, “Ultralong quantum optical data storage using an optical locking technique,” Nat. Photonics 3(9), 518–522 (2009).
[CrossRef]

Nature

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[CrossRef] [PubMed]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. A. Gisin, “A solid-state light-matter interface at the single-photon level,” Nature 456(7223), 773–777 (2008).
[CrossRef] [PubMed]

M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam, and B. C. Buchler, “Coherent optical pulse sequencer for quantum applications,” Nature 461(7261), 241–245 (2009).
[CrossRef] [PubMed]

Opt. Commun.

M. Nilsson and S. Kroll, “Solid state quantum memory using complete absorption and re-emission of photons by tailored and externally controlled inhomogeneous absorption profiles,” Opt. Commun. 247(4-6), 393–403 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

For reabsorption of photon echo signals seeN. Sangouard, C. Simon, M. Afzelius, and N. Gisin, “Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening,” Phys. Rev. A 75(3), 032327 (2007).
[CrossRef]

Phys. Rev. Lett.

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, “Electro-optic quantum memory for light using two-level atoms,” Phys. Rev. Lett. 100(2), 023601 (2008).
[CrossRef] [PubMed]

S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87(17), 173601 (2001).
[CrossRef] [PubMed]

M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minár, H. de Riedmatten, N. Gisin, and S. Kröll, “Demonstration of atomic frequency comb memory for light with spin-wave storage,” Phys. Rev. Lett. 104(4), 040503 (2010).
[CrossRef] [PubMed]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007).
[CrossRef] [PubMed]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95(6), 063601 (2005).
[CrossRef] [PubMed]

Other

B. S. Ham, “Analysis of controlled photon storage time using phase locking by atomic population transfer,” arXiv:1004.0980.

M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics 79–95 (Addison-Wesley, 1974).
[PubMed]

B. S. Ham, and J. Hahn, “Phase locked photon echoes for near-perfect retrieval efficiency and extended storage time,” arXiv: 0911.3869 (2009).

B. S. Ham, and J. Hahn, “Ultralong photon echo storage using optical locking,” arXiv:0912.2756.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Partial energy level diagram. (b) Light pulse sequence of (a).

Fig. 2
Fig. 2

Optically locked echo using phase locked condition. (a) conventional three-pulse photon echo without B1 and B2 (red) versis optical locked echo with B1 and B2 (blue). Inset: pulse sequence. Pulse duration of D, W, and R: 100 ns corresponding to a π/2 pulse area. B1 and B2: 100 and 300 ns corresponding to π and 3π pulse area, respectively. TD = 5 μs; TW = 10 μs; TB1 = 10.1 μs; TB2 = 50 μs; TR = 51 μs; ρ11 (0) = 1; Δinh = 680 kHz; Γ31 = Γ32 = γ31 = γ32 = 2 kHz; Γ21 = γ21 = 0. (b). Individual atom phase evolution: δ = 30 kHz. (c) Expanded figure of (b). Pink shade: B2 pulse. (d) Corresponding figure to (c) for population on each state.

Fig. 3
Fig. 3

Excited state population versus absorption. Deshelving pulse areas of B1 and B2: 3π−π (blue); 3π−2π (red); 3π−3π (dotted); 3π−4π (magenta); 3π−5π (green).

Tables (1)

Tables Icon

Table 1 Coefficient Bmn of nth η for deshelving pulse area mπ for T T 1 o p t .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

( 4 j 1 ) π ,
( 4 j π ) ,
ρ 33 = A ( 1 η ) exp ( t / T 1 o p t ) ,
ρ 22 = A ( η ) exp ( t / T 1 s p i n ) .
ρ 33 = A [ ( 1 η ) 2 + η 2 ] ,
ρ 22 = A [ 2 η ( 1 η ) ] .
ρ 33 = A [ ( 1 η ) 3 + 3 η 2 ( 1 η ) ] ,
ρ 22 = A [ 3 η ( 1 η ) 2 + η 3 ] ,
ρ 33 = A [ ( 1 η ) 4 + 6 η 2 ( 1 η ) 2 + η 4 ] ,
ρ 22 = A [ 4 η ( 1 η ) 3 + 4 η 3 ( 1 η ) ] ,
ρ 33 = A [ ( 1 η ) 6 + 15 η 2 ( 1 η ) 4 + 15 η 4 ( 1 η ) 2 + η 6 ] ,
ρ 33 = A [ 3 η 2 ( 1 η ) 2 + η 4 ] ,

Metrics