Abstract

We extend the coupled dipole method to a semianalytical method that can be applied with high efficiency and accuracy to metallic heterogeneous binary particle arrays. The spectrum of the binary structure that we propose, which is composed of alternating silver and gold spherical nanoparticles, is characterized by additional geometric resonances near diffraction orders that originate from the real periodicity (i.e., twice the interparticle distance). The new diffraction orders can force the induced polarization of the heterogeneous particles out of phase, so that light scattered from them interferes destructively, which leads to geometric resonances imposed by destructive interference. By varying the constituent particle sizes, both the width and intensity of the additional geometric resonances can be effectively tuned. In particular, the Fano profiles of the geometric resonances can be tuned and are inverted when the contrast in scattering capabilities of the two types of constituent particles changes. The extensive tunability of the binary structure makes itself highly desirable for design of plasmon-based chemical and biological sensors.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. Carron, W. Fluhr, M. Meier, A. Wokaun, and H. W. Lehmann, “Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering,” J. Opt. Soc. Am. B 3, 430–440 (1986).
    [CrossRef]
  2. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
    [CrossRef] [PubMed]
  3. S. Zou and G. C. Schatz, “Narrow plasmonic/hotonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
    [CrossRef] [PubMed]
  4. V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, 115–121 (2005).
    [CrossRef]
  5. B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [CrossRef] [PubMed]
  6. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
    [CrossRef] [PubMed]
  7. M. Inoue, K. ohtaka, and S. Yanagawa, “Light scattering from macroscopic spherical bodies. 11. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–699 (1982).
    [CrossRef]
  8. R. G. Newton, “Optical therem and beyond,” Am. J. Phys. 44, 639–642 (1976).
    [CrossRef]
  9. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
    [CrossRef]
  10. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
    [CrossRef] [PubMed]
  11. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
    [CrossRef]
  12. S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010)
    [CrossRef] [PubMed]
  13. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [CrossRef]
  14. U. Laor and G. C. Schatz, “The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances,” Chem. Phys. Lett. 82, 566–570 (1981).
    [CrossRef]
  15. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993).
    [CrossRef]
  16. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B,  107, 7343–7350 (2003).
    [CrossRef]
  17. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  18. D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E. D. Palik (Academic Press, New York, 1985), pp. 350.
  19. A. A. Lazarides and G. C. Schatz, “DNA-linked metal nanosphere materials: structural basis for the optical properties, ” J. Phys. Chem. B 104, 460–467 (2000).
    [CrossRef]
  20. S. Zou and G. C. Schatz, “Response to “Comment on ‘Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’ ”J. Chem. Phys. 122, 097102 (2005).
    [CrossRef]

2010 (1)

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010)
[CrossRef] [PubMed]

2008 (3)

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[CrossRef] [PubMed]

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

2007 (1)

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

2005 (2)

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, 115–121 (2005).
[CrossRef]

S. Zou and G. C. Schatz, “Response to “Comment on ‘Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’ ”J. Chem. Phys. 122, 097102 (2005).
[CrossRef]

2004 (2)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/hotonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef] [PubMed]

2003 (1)

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B,  107, 7343–7350 (2003).
[CrossRef]

2000 (1)

A. A. Lazarides and G. C. Schatz, “DNA-linked metal nanosphere materials: structural basis for the optical properties, ” J. Phys. Chem. B 104, 460–467 (2000).
[CrossRef]

1993 (1)

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993).
[CrossRef]

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

1986 (1)

1982 (1)

M. Inoue, K. ohtaka, and S. Yanagawa, “Light scattering from macroscopic spherical bodies. 11. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–699 (1982).
[CrossRef]

1981 (1)

U. Laor and G. C. Schatz, “The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances,” Chem. Phys. Lett. 82, 566–570 (1981).
[CrossRef]

1976 (1)

R. G. Newton, “Optical therem and beyond,” Am. J. Phys. 44, 639–642 (1976).
[CrossRef]

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Auguie, B.

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Bachelier, G.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[CrossRef] [PubMed]

Bardou, N.

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010)
[CrossRef] [PubMed]

Barnes, W. L.

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

Benichou, E.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[CrossRef] [PubMed]

Brevet, P.-F.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[CrossRef] [PubMed]

Carron, K. T.

Christ, A.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Collin, S.

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010)
[CrossRef] [PubMed]

Del Fatti, N.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[CrossRef] [PubMed]

Draine, B. T.

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Ekinci, Y.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Fluhr, W.

Gippius, N. A.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Haidar, R.

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010)
[CrossRef] [PubMed]

Inoue, M.

M. Inoue, K. ohtaka, and S. Yanagawa, “Light scattering from macroscopic spherical bodies. 11. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–699 (1982).
[CrossRef]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef] [PubMed]

Jonin, C.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[CrossRef] [PubMed]

Kelly, K. L.

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B,  107, 7343–7350 (2003).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Laor, U.

U. Laor and G. C. Schatz, “The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances,” Chem. Phys. Lett. 82, 566–570 (1981).
[CrossRef]

Lazarides, A. A.

A. A. Lazarides and G. C. Schatz, “DNA-linked metal nanosphere materials: structural basis for the optical properties, ” J. Phys. Chem. B 104, 460–467 (2000).
[CrossRef]

Lehmann, H. W.

Markel, V. A.

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, 115–121 (2005).
[CrossRef]

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993).
[CrossRef]

Martin, O. J. F.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Meier, M.

Newton, R. G.

R. G. Newton, “Optical therem and beyond,” Am. J. Phys. 44, 639–642 (1976).
[CrossRef]

Pelouard, J. L.

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010)
[CrossRef] [PubMed]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Rommeluere, S.

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010)
[CrossRef] [PubMed]

Russier-Antoine, I.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[CrossRef] [PubMed]

Schatz, G. C.

S. Zou and G. C. Schatz, “Response to “Comment on ‘Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’ ”J. Chem. Phys. 122, 097102 (2005).
[CrossRef]

S. Zou and G. C. Schatz, “Narrow plasmonic/hotonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef] [PubMed]

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B,  107, 7343–7350 (2003).
[CrossRef]

A. A. Lazarides and G. C. Schatz, “DNA-linked metal nanosphere materials: structural basis for the optical properties, ” J. Phys. Chem. B 104, 460–467 (2000).
[CrossRef]

U. Laor and G. C. Schatz, “The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances,” Chem. Phys. Lett. 82, 566–570 (1981).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Solak, H. H.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Tikhodeev, S. G.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Vallee, F.

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[CrossRef] [PubMed]

Vincent, G.

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010)
[CrossRef] [PubMed]

Wokaun, A.

Zhao, L.

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B,  107, 7343–7350 (2003).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, “Response to “Comment on ‘Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’ ”J. Chem. Phys. 122, 097102 (2005).
[CrossRef]

S. Zou and G. C. Schatz, “Narrow plasmonic/hotonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef] [PubMed]

Am. J. Phys. (1)

R. G. Newton, “Optical therem and beyond,” Am. J. Phys. 44, 639–642 (1976).
[CrossRef]

Astrophys. J. (2)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Chem. Phys. Lett. (1)

U. Laor and G. C. Schatz, “The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances,” Chem. Phys. Lett. 82, 566–570 (1981).
[CrossRef]

J. Chem. Phys. (3)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/hotonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Response to “Comment on ‘Silver nanoparticle array structures that produce remarkable narrow plasmon line shapes’ ”J. Chem. Phys. 122, 097102 (2005).
[CrossRef]

J. Mod. Opt. (1)

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

V. A. Markel, “Divergence of dipole sums and the nature of non-Lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B 38, 115–121 (2005).
[CrossRef]

J. Phys. Chem. B (2)

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B,  107, 7343–7350 (2003).
[CrossRef]

A. A. Lazarides and G. C. Schatz, “DNA-linked metal nanosphere materials: structural basis for the optical properties, ” J. Phys. Chem. B 104, 460–467 (2000).
[CrossRef]

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Phys. Rev. B (2)

M. Inoue, K. ohtaka, and S. Yanagawa, “Light scattering from macroscopic spherical bodies. 11. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres,” Phys. Rev. B 25, 689–699 (1982).
[CrossRef]

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76, 201405 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

S. Collin, G. Vincent, R. Haidar, N. Bardou, S. Rommeluere, and J. L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010)
[CrossRef] [PubMed]

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, and P.-F. Brevet, “Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles,” Phys. Rev. Lett. 101, 197401 (2008).
[CrossRef] [PubMed]

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef] [PubMed]

Other (1)

D. W. Lynch and W. R. Hunter, in Handbook of optical constants of solids, E. D. Palik (Academic Press, New York, 1985), pp. 350.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Scheme of a Ag/Au binary array. Both the wave vector and polarization of the incident wave are perpendicular to the array axis.

Fig. 2.
Fig. 2.

(a) Real part of retarded dipole sums S of a unitary array with the interparticle distance d = 500 nm and the reciprocal of the dipole polarizabilities of silver and gold spheres with the radii R=50 nm. (b) S odd and S even for a binary array with the interparticle distance d = 500 nm. For convenience, all quantities are normalized by a factor R 3.

Fig. 3.
Fig. 3.

(a) Extinction spectrum of a Ag/Au binary array with d = 450 nm interparticle distance. (b) Contributions of silver and gold constituent particles to the extinction spectrum. The corresponding unitary arrays with (c) d = 450 nm and (d) d = 900 nm. The radii of the silver and gold particles are R Ag = 60 nm and R Au = 80 nm, respectively.

Fig. 4.
Fig. 4.

Extinction spectra of Ag/Au binary arrays, in which the interparticle distance varies from (a) d = 200 to (f) d = 600 nm. The radii of all particles are R = 50 nm. Red (green) lines represent contributions of silver (gold) particles in arrays.

Fig. 5.
Fig. 5.

Extinction spectra of Ag/Au binary arrays. In panel (a), the silver-particle radius varies from R Ag = 30 to 70 nm while the gold-particle radius is fixed at R Au = 70 nm. In panel (b), the gold-particle radius varies from R Au = 60 to 100 nm while the silver-particle radius is fixed at R Ag = 40 nm. The interparticle distance is d = 300 nm.

Fig. 6.
Fig. 6.

Extinction spectra of (a) a silver array (red), a gold array (green), and (b) a Ag/Au binary array (black), and contributions of silver (red) and gold (green) particles. The interparticle distance is d = 600 nm for the unitary arrays and d = 300 nm for the binary array. The radii of all particles are R = 50 nm. Panels (c) and (d) show the corresponding absorption spectra.

Fig. 7.
Fig. 7.

(a) Absorption spectra of an Ag/Au binary array with R Au = 50 nm and for R Ag varying from 45 to 60 nm in 5-nm steps. Panels (b) and (c) show the contributions of gold and silver nanoparticles in the binary array. The interparticle distance is d = 300 nm.

Fig. 8.
Fig. 8.

Extinction spectra of finite Ag/Au binary arrays composed of different numbers of particles with the silver-particle radius R Ag = 30 nm, the gold-particle radius R Au = 55 nm, and the interparticle distance d = 450 nm.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

E loc , i = E inc , i + E dipole , i = E 0 exp ( i k · r i ) j = 1 , j i N A ij · P j , i = 1 , 2 , , N ,
A ij · P j = k 2 e i kr ij r ij × ( r ij × P j ) r ij 3 + e i kr ij ( 1 i kr ij ) r ij 2 P j 3 r ij ( r ij · P j ) r ij 5 ,
i = 1 , 2 , , N , j = 1 , 2 , , N , j i ,
A P = E ,
C ext = 4 π k E 0 2 j = 1 N Im ( E inc , j * · P j ) .
E loc , 1 = E 0 ( + A 1 , 3 · P 1 + A 1 , 2 · P 2 + A 1 , 1 · P 1 + A 1 , 0 · P 2
+ A 1 , 2 · P 2 + A 1 , 3 · P 1 + A 1 , 4 · P 2 + A 1 , 5 · P 1 + ) ,
E loc , 2 = E 0 ( + A 2 , 2 · P 2 + A 2 , 1 · P 1 + A 2 , 0 · P 2 + A 2 , 1 · P 1
+ A 2 , 3 · P 1 + A 2 , 4 · P 2 + A 2 , 5 · P 1 + A 2 , 6 · P 2 + ) .
E loc , 1 = E 0 ( + A 4 d + A 2 d + A 2 d + A 4 d + ) · P 1
( A 3 d + A d + A d + A 3 d + ) · P 2 ,
E loc , 2 = E 0 ( + A 4 d + A 2 d + A 2 d + A 4 d + ) · P 2
( A 3 d + A d + A d + A 3 d + ) · P 1 .
S odd = A 3 d A d A d A 3 d ,
S even = A 4 d A 2 d A 2 d A 4 d ,
S odd = r ij = ( 2 n 1 ) d [ ( 1 i kr ij ) × ( 3 cos 2 θ ij 1 ) e ikr ij r ij 3 + k 2 sin 2 θ ij e i kr ij r ij ] ,
S even = r ij = 2 nd [ ( 1 i kr ij ) × ( 3 cos 2 θ ij 1 ) e i kr ij r ij 3 + k 2 sin 2 θ ij e i kr ij r ij ] , n = 1 , 2 , 3 ,
P 1 = α 1 E loc , 1 , P 2 = α 2 E loc , 2 ,
E loc , 1 = P 1 α 1 , E loc , 2 = P 2 α 2 .
P 1 α 1 = E 0 + S even P 1 + S odd P 2 , P 2 α 2 = E 0 + S even P 2 + S odd P 1 .
P 1 = 1 α 2 ( S even S odd ) ( 1 α 2 S even ) ( 1 α 1 S even ) S odd 2 E 0 ,
P 2 = 1 α 1 ( S even S odd ) ( 1 α 2 S even ) ( 1 α 1 S even ) S odd 2 E 0 .
C ext = 2 π N k Im [ ( 1 α 1 + 1 α 1 ) 2 ( S even S odd ) ( 1 α 2 S even ) ( 1 α 1 S even ) S odd 2 ] .
P 1 = P 2 = P = E 0 1 α S ,
C ext = 4 π N k Im ( 1 1 α S ) .
P 1 = α 1 S even P 2 , P 2 = E 0 1 α 2 S even .
P 1 = α 1 S even P 2 , P 2 = E 0 1 α 2 S even .

Metrics