Abstract

The stability of single-sideband (SSB) modulator based recirculating frequency shifter (RFS) is analyzed theoretically. The optimum radio frequency (RF) drive peak-to-peak voltage used to drive the modulator is studied with considering the amplified spontaneous emission (ASE) noise of optical amplifier and crosstalk so as to obtain a maximum overall effective optical signal to noise ratio (OSNR) which is defined to quantify the quality of generated tones. Small desired tones number and lower RF peak-to-peak voltage can reduce the crosstalk effectively. While the trade-off should be considered since the larger desired tones number it is, the higher optimum drive voltage should be used when the SSB-based RFS reached the maximum OSNR. The theoretical results show that the optimum operation condition is helpful to improve the performance of RFS which can be a good application for the T-bit/s optical transmission in practice.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chandrasekhar and D. Xiang Liu, “Kilper, C. R. Doerr, A. H. Gnauck, E. C. Burrows, and L. L. Buhl. “Terabit Transmission at 42.7-Gb/s on 50-GHz Grid Using Hybrid RZ-DQPSK and NRZ-DBPSK Formats Over 1680 km SSMF Spans and 4 Bandwidth-Managed ROADMs,” J. Lightwave Technol. 26, 85–89 (2008).
    [CrossRef]
  2. Xiang Liu, Gill, D.M., Chandrasekhar, S., Buhl, L.L., Earnshaw M., Cappuzzo M.A., Gomez L.T., Chen Y., Klemens F.P., Burrows E.C., Chen, Y.-K., Tkach R.W.. “Compact and broadband coherent receiver front-end for complete demodulation of a 1.12-terabit/s multi-carrier PDM-QPSK signal,” ECOC. Paper 10.3.2, (2009).
  3. Liu Xiang, Chandrasekhar S., Zhu Benyuan, Peckham David W. “Efficient Digital Coherent Detection of A 1.2-Tb/s 24-Carrier No-Guard-Interval CO-OFDM Signal by Simultaneously Detecting Multiple Carriers Per Sampling,” OFC. OWO2, (2010).
  4. S. Chandrasekhar, Xiang Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-Carrier No-Guard-Interval Coherent OFDM Superchannel over 7200-km of Ultra-Large-Area Fiber,” ECOC. PD2.6, (2009).
  5. Roman Dischler, Fred Buchali. “Transmission of 1.2 Tb/s Continuous Waveband PDM-OFDM-FDM signal with Spectral Efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” OFC. PDPC2, (2009).
  6. William Shieh, “High Spectral Efficiency Coherent Optical OFDM for 1 Tb/s Ethernet Transport,” OFC. OWW1, (2009).
  7. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  8. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s Single-Channel Coherent Optical OFDM Transmission with Orthogonal-band Multiplexing and Subwavelength Bandwidth Access,” J. Lightwave Technol. 28(4), 308–315 (2010).
    [CrossRef]
  9. Xiang Zhou, Jianjun Yu, Mei Du, and Guodong Zhang. “2Tb/s (20´107 Gb/s) RZ-DQPSK straight-line transmission over 1005 km of standard single mode fiber (SSMF) without Raman amplification,” OFC. OMQ3, (2008).
  10. Yu Jianjun, Zhou Xiang, “32Tb/s DWDM Transmission System,” ACP. TuEE1, (2009).
  11. Toshiaki Kuri, Hiroyuki Toda, Jose Vegas Olmos Juan, and Kitayama Ken-ichi. “Reconfigurable Dense Wavelength Division Multiplexing Millimeter-Wave-Band Radio-over-Fiber Access System Technologies,” J. Lightwave Technol. 28, (2010 accepted).
    [CrossRef]
  12. T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
    [CrossRef]
  13. Sheng Liu, Trina T. Ng, David J. Richardson, Periklis Petropoulos. “An Optical Frequency Comb Generator as a Broadband Pulse Source,” OFC. OThG7, (2009).
  14. McGhan D., O'Sullivan M., Sotoodeh M., Savchenko A., Bontu C., Belanger M., Roberts K. “Electronic Dispersion Compensation,” OFC. OWK1, (2006).

2010 (2)

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s Single-Channel Coherent Optical OFDM Transmission with Orthogonal-band Multiplexing and Subwavelength Bandwidth Access,” J. Lightwave Technol. 28(4), 308–315 (2010).
[CrossRef]

Toshiaki Kuri, Hiroyuki Toda, Jose Vegas Olmos Juan, and Kitayama Ken-ichi. “Reconfigurable Dense Wavelength Division Multiplexing Millimeter-Wave-Band Radio-over-Fiber Access System Technologies,” J. Lightwave Technol. 28, (2010 accepted).
[CrossRef]

2009 (2)

T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
[CrossRef]

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
[CrossRef] [PubMed]

2008 (1)

Chandrasekhar, S.

Chen, S.

Juan, Jose Vegas Olmos

Toshiaki Kuri, Hiroyuki Toda, Jose Vegas Olmos Juan, and Kitayama Ken-ichi. “Reconfigurable Dense Wavelength Division Multiplexing Millimeter-Wave-Band Radio-over-Fiber Access System Technologies,” J. Lightwave Technol. 28, (2010 accepted).
[CrossRef]

Ken-ichi, Kitayama

Toshiaki Kuri, Hiroyuki Toda, Jose Vegas Olmos Juan, and Kitayama Ken-ichi. “Reconfigurable Dense Wavelength Division Multiplexing Millimeter-Wave-Band Radio-over-Fiber Access System Technologies,” J. Lightwave Technol. 28, (2010 accepted).
[CrossRef]

Kuri, Toshiaki

Toshiaki Kuri, Hiroyuki Toda, Jose Vegas Olmos Juan, and Kitayama Ken-ichi. “Reconfigurable Dense Wavelength Division Multiplexing Millimeter-Wave-Band Radio-over-Fiber Access System Technologies,” J. Lightwave Technol. 28, (2010 accepted).
[CrossRef]

Kurokawa, K.

T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
[CrossRef]

Ma, Y.

Sakamoto, T.

T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
[CrossRef]

Shieh, W.

Tang, Y.

Toda, Hiroyuki

Toshiaki Kuri, Hiroyuki Toda, Jose Vegas Olmos Juan, and Kitayama Ken-ichi. “Reconfigurable Dense Wavelength Division Multiplexing Millimeter-Wave-Band Radio-over-Fiber Access System Technologies,” J. Lightwave Technol. 28, (2010 accepted).
[CrossRef]

Tomita, S.

T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
[CrossRef]

Xiang Liu, D.

Yamamoto, T.

T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
[CrossRef]

Yang, Q.

Electron. Lett. (1)

T. Sakamoto, T. Yamamoto, K. Kurokawa, and S. Tomita, “DWDM transmission in O-band over 24 km PCF using optical frequency comb based multicarrier source,” Electron. Lett. 45(16), 850–851 (2009).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (9)

Xiang Zhou, Jianjun Yu, Mei Du, and Guodong Zhang. “2Tb/s (20´107 Gb/s) RZ-DQPSK straight-line transmission over 1005 km of standard single mode fiber (SSMF) without Raman amplification,” OFC. OMQ3, (2008).

Yu Jianjun, Zhou Xiang, “32Tb/s DWDM Transmission System,” ACP. TuEE1, (2009).

Xiang Liu, Gill, D.M., Chandrasekhar, S., Buhl, L.L., Earnshaw M., Cappuzzo M.A., Gomez L.T., Chen Y., Klemens F.P., Burrows E.C., Chen, Y.-K., Tkach R.W.. “Compact and broadband coherent receiver front-end for complete demodulation of a 1.12-terabit/s multi-carrier PDM-QPSK signal,” ECOC. Paper 10.3.2, (2009).

Liu Xiang, Chandrasekhar S., Zhu Benyuan, Peckham David W. “Efficient Digital Coherent Detection of A 1.2-Tb/s 24-Carrier No-Guard-Interval CO-OFDM Signal by Simultaneously Detecting Multiple Carriers Per Sampling,” OFC. OWO2, (2010).

S. Chandrasekhar, Xiang Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-Carrier No-Guard-Interval Coherent OFDM Superchannel over 7200-km of Ultra-Large-Area Fiber,” ECOC. PD2.6, (2009).

Roman Dischler, Fred Buchali. “Transmission of 1.2 Tb/s Continuous Waveband PDM-OFDM-FDM signal with Spectral Efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” OFC. PDPC2, (2009).

William Shieh, “High Spectral Efficiency Coherent Optical OFDM for 1 Tb/s Ethernet Transport,” OFC. OWW1, (2009).

Sheng Liu, Trina T. Ng, David J. Richardson, Periklis Petropoulos. “An Optical Frequency Comb Generator as a Broadband Pulse Source,” OFC. OThG7, (2009).

McGhan D., O'Sullivan M., Sotoodeh M., Savchenko A., Bontu C., Belanger M., Roberts K. “Electronic Dispersion Compensation,” OFC. OWK1, (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of SSB modulator based on RFS

Fig. 2
Fig. 2

The model of calculating OSNR penalty

Fig. 3
Fig. 3

The relationship between normalized power and peak-to-peak RF Drive Voltage

Fig. 4
Fig. 4

The relationship between crosstalk coefficient and peak-to-peak RF Drive Voltage

Fig. 5
Fig. 5

. The worst-case crosstalk at with different desired tones number and RF drive voltage

Fig. 6
Fig. 6

The worst-case crosstalk particular for N = 23 (green line) and N = 36 (blue line) respectively.

Fig. 7
Fig. 7

The output spectrum for (a) N = 23 and (b) N = 36.

Fig. 8
Fig. 8

The OSNR from EDFA with different desired tones number at different V pp

Fig. 9
Fig. 9

The OSNR 3rd-harmonic with different desired tones number at different V pp

Fig. 10
Fig. 10

The overall OSNR eff with different desired tones number at different V pp

Fig. 11
Fig. 11

The optimum V pp and maximum overall OSNR for different desired tones number

Fig. 12
Fig. 12

The effective OSNR penalty with different desired tones number N

Tables (1)

Tables Icon

Table 1 The output of RFS after n RTs of N

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

E o u t ( t ) = E i n ( t ) 2 [ j sin ( π 2 f I ( t ) V π ) + sin ( π 2 f Q ( t ) V π ) ]
E o u t ( t ) = E i n ( t ) 2 [ j sin ( δ m sin ( 2 π f s t ) ) + sin ( δ m cos ( 2 π f s t ) ) ] exp ( j ϕ R T ) = E i n ( t ) j k = 1 J 2 k 1 ( δ m ) sin [ 2 π ( 2 k 1 ) f s t ] exp ( j ϕ R T ) + E i n ( t ) k = 1 j 2 k 2 J 2 k 1 ( δ m ) cos [ 2 π ( 2 k 1 ) f s t ] exp ( j ϕ R T ) = E i n ( t ) [ J 1 ( δ m ) exp ( j 2 π f s t ) J 3 ( δ m ) exp ( j 6 π f s t ) ] exp ( j ϕ R T ) + E i n ( t ) [ J 5 ( δ m ) exp ( j 10 π f s t ) ] exp ( j ϕ R T )
E 1 ( t ) = E i n ( t ) + E i n ( t ) J 1 ( δ m ) [ exp ( j 2 π f s t ) + b exp ( j 6 π f s t ) ] exp ( j ϕ R T )
L M o d = G R = 20 lg ( | J 1 | )
T = [ exp ( j 2 π f s t ) + b exp ( j 6 π f s t ) ] exp ( j ϕ R T )
E 1 ( t ) = E i n ( t ) + T E i n ( t ) = E i n ( t ) ( 1 + T ) E 2 ( t ) = E i n ( t ) + T E 1 ( t ) = E i n ( t ) ( 1 + T + T 2 ) ... E N ( t ) = E i n ( t ) + T E N 1 ( t ) = E i n ( t ) ( 1 + T + T 2 + ... + T N )
E N ( t ) = E i n ( t ) n = 0 N T n            E i n ( t ) n = 0 N { exp ( j 2 π n f s t ) + n b exp [ j 2 π ( n 4 ) f s t ) ] } exp ( j n ϕ R T )
E N ( t )   E i n ( t ) n = 0 N exp ( j 2 π n f s t ) exp ( j n ϕ R T )                + E i n ( t ) n = 1 N 4 n b exp ( j 2 π n f s t ) exp [ j ( n + 4 ) ϕ R T ]
E N + 1 ( t ) = E i n ( t ) n = 0 N + 1 T n = E i n ( t ) n = 0 N T n + E i n ( t ) T N + 1 = E i n ( t ) n = 0 N [ exp ( j 2 π f s t ) + b exp ( j 6 π f s t ) ] n + E i n ( t ) [ exp ( j 2 π f s t ) + b exp ( j 6 π f s t ) ] N + 1 exp [ j ( N + 1 ) ϕ R T ]
E N + 1 ( t ) = E i n ( t ) n = 0 N exp ( j 2 π n f s t ) exp ( j n ϕ R T ) + E i n ( t ) [ exp ( j 2 π f s t ) + b exp ( j 6 π f s t ) ] N + 1 exp [ j ( N + 1 ) ϕ R T ] E i n ( t ) n = 0 N exp ( j 2 π n f s t ) exp ( j n ϕ R T ) + E i n ( t ) n = 1 N 4 n b exp ( j 2 π n f s t ) exp [ j ( n + 4 ) ϕ R T ] + E i n ( t ) ( N 3 ) b exp [ j 2 π ( N 3 ) f s t ] exp [ j ( N + 1 ) ϕ R T ]
E N + 4 ( t ) = E N ( t ) + E i n ( t ) n = 0 3 T n F r E i n ( t ) n = 0 N exp ( j 2 π n f s t ) exp ( j n ϕ R T ) + E i n ( t ) n = 1 N c n exp ( j 2 π n f s t ) exp ( j n ϕ R T )
c n = n b exp ( j 4 ϕ R T )            ,                  n ( N 3)      = ( N 3 ) b exp ( j 4 ϕ R T ) ,                  n > ( N 3)
β max = 20 lg ( 1 | c n max | )
O S N R E D F A = P o u t _ t o n e P A S E _ t o t a l = G P i n _ t o n e P A S E _ t o t a l
L t o t a l ( d B ) = L c o u p l e r + L f i l t e r + L I / Q + L M o d
P o u t _ t o n e ( d B ) = 10 lg ( G P i n _ t o n e ) = 10 lg G + P o u t ( d B m ) 10 lg N L t o t a l ( d B )
P A S E _ t o t a l ( d B ) = 10 lg [ ( N + 4 ) P A S E _ R T ] = 10 lg [ ( N + 4 ) F n ( G 1 ) h ν B r ]
O S N R E D F A ( d B ) = P o u t _ t o n e ( d B m ) P A S E _ t o t a l ( d B m ) 58 + ( P o u t ( d B m ) N F ( d B ) L t o t a l ( d B ) ) 20 lg N
O S N R 3 r d h a r m o n i c = P o u t _ t o n e ( N 3 ) G P 3 = P i n _ t o n e ( N 3 ) P 3 = 1 ( N 3 ) | b | 2
O S N R 3 r d h a r m o n i c ( d B ) = 20 lg ( | b | ) 10 lg ( N 3 )
P A S E _ t o t a l = P i n _ t o n e 10 O S N R E D F A 10
P 3 = P i n _ t o n e 10 O S N R 3 r d h a r m o n i c 10
O S N R e f f = 10 lg P o u t _ t o n e P A S E _ t o t a l + P 3 = 10 lg ( 10 O S N R E D F A 10 + 10 O S N R 3 r d h a r m o n i c 10 )
O S N R p e n a l t y ( d B ) = 10 lg ( 10 O S N R r e q 10 10 O S N R e f f 10 ) O S N R r e q ( d B )

Metrics