Abstract

A pulse width tunable passively mode-locked laser with a wavelength of 1,064 nm and two Nd:YVO4 crystals located in asymmetric positions is demonstrated. By adjusting the pump power of the crystals, the pulse width can be continuously tuned from 8.8 to 20.3 ps at a stable mode-locked repetition rate of 122 MHz. A theoretical model is proposed to describe the experiment results phenomenologically. In this system, a maximum output power of 4.44 W is achieved with a pump of 13.68 W, corresponding to an optical-to-optical efficiency of 32.5%. The beam quality factor, M2, is found to be M2 x = 1.15 and M2 y = 1.13 in the orthogonal directions at an output power of 3.2 W.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Gratton and M. J. van de Ven, “Laser sources for confocal microscopy,” in Handbook of Biological confocal microscopy, James B. Pawley, ed. (Springer Science + Business Media, LLC, 2006).
  2. K. Weingarten, “High Energy Picosecond Lasers: Ready for Prime Time,” Laser Technik Journal 6(3), 51–54 (2009).
    [CrossRef]
  3. B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
    [CrossRef]
  4. F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(6), 569–579 (1995).
    [CrossRef]
  5. F. Brunner, R. Paschotta, J. Aus der Au, G. J. Spühler, F. Morier-Genoud, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “Widely tunable pulse durations from a passively mode-locked thin-disk Yb:YAG laser,” Opt. Lett. 26(6), 379–381 (2001), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-6-379 .
    [CrossRef]
  6. C. J. Flood, D. R. Walker, and H. M. van Driel, “Effect of spatial hole burning in a mode-locked diode end-pumped Nd:YAG laser,” Opt. Lett. 20(1), 58–60 (1995), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-20-1-58 .
    [CrossRef] [PubMed]
  7. C. J. Flood, D. R. Walker, and H. M. van Driel, “Role of Spatial Hole Burning in an Actively Mode-Locked Solid-State Laser, ” in Advanced Solid State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, 1995), paper PL1 http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-1995-PL1 .
  8. A. Agnesi, A. Lucca, G. Reali, and A. Tomaselli, “All-solid-state high-repetition-rate optical source tunable in wavelength and in pulse duration,” J. Opt. Soc. Am. B 18(3), 286–290 (2001), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-3-286 .
    [CrossRef]
  9. A. Takada, K. Sato, M. Saruwatari, and M. Yamamoto, “Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MOW laser/MQW electroabsorption modulator,” Electron. Lett. 30(11), 898–900 (1994).
    [CrossRef]
  10. M. Lührmann, C. Theobald, R. Wallenstein, and J. A. L’huillier, “Efficient generation of mode-locked pulses in Nd:YVO4 with a pulse duration adjustable between 34 ps and 1 ns,” Opt. Express 17(8), 6177–6186 (2009).
    [CrossRef] [PubMed]
  11. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
    [CrossRef]
  12. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [CrossRef] [PubMed]
  13. U. Keller, “Ultrafast solid-state lasers,” Prog. Opt. 46, 1–115 (2004).
    [CrossRef]
  14. F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Quantum Electron. 4(2), 159–168 (1998).
    [CrossRef]
  15. B. A. Malomed, A. G. Vladimirov, and V. Galina, “Stable autosolitons in dispersive media with saturable gain and absorption,” Phys. Lett. A 274(3-4), 111–116 (2000).
    [CrossRef]
  16. A. G. Vladimirov, N. N. Rozanov, S. V. Fedorov, and G. V. Khodova, “Bifurcation analysis of laser autosolitons,” Quantum Electron. 27(11), 949–952 (1997).
    [CrossRef]

2009 (2)

2004 (2)

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[CrossRef]

U. Keller, “Ultrafast solid-state lasers,” Prog. Opt. 46, 1–115 (2004).
[CrossRef]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

2001 (2)

2000 (1)

B. A. Malomed, A. G. Vladimirov, and V. Galina, “Stable autosolitons in dispersive media with saturable gain and absorption,” Phys. Lett. A 274(3-4), 111–116 (2000).
[CrossRef]

1998 (1)

F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

1997 (1)

A. G. Vladimirov, N. N. Rozanov, S. V. Fedorov, and G. V. Khodova, “Bifurcation analysis of laser autosolitons,” Quantum Electron. 27(11), 949–952 (1997).
[CrossRef]

1995 (3)

C. J. Flood, D. R. Walker, and H. M. van Driel, “Effect of spatial hole burning in a mode-locked diode end-pumped Nd:YAG laser,” Opt. Lett. 20(1), 58–60 (1995), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-20-1-58 .
[CrossRef] [PubMed]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
[CrossRef]

F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(6), 569–579 (1995).
[CrossRef]

1994 (1)

A. Takada, K. Sato, M. Saruwatari, and M. Yamamoto, “Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MOW laser/MQW electroabsorption modulator,” Electron. Lett. 30(11), 898–900 (1994).
[CrossRef]

Agnesi, A.

Aus der Au, J.

Braun, B.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
[CrossRef]

F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(6), 569–579 (1995).
[CrossRef]

Brunner, F.

der Au, J. A.

F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

Erhard, S.

Fedorov, S. V.

A. G. Vladimirov, N. N. Rozanov, S. V. Fedorov, and G. V. Khodova, “Bifurcation analysis of laser autosolitons,” Quantum Electron. 27(11), 949–952 (1997).
[CrossRef]

Flood, C. J.

Galina, V.

B. A. Malomed, A. G. Vladimirov, and V. Galina, “Stable autosolitons in dispersive media with saturable gain and absorption,” Phys. Lett. A 274(3-4), 111–116 (2000).
[CrossRef]

Giesen, A.

Grange, R.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[CrossRef]

Haiml, M.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[CrossRef]

Hövel, R.

Karszewski, M.

Kärtner, F. X.

F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(6), 569–579 (1995).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
[CrossRef]

Keller, U.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[CrossRef]

U. Keller, “Ultrafast solid-state lasers,” Prog. Opt. 46, 1–115 (2004).
[CrossRef]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

F. Brunner, R. Paschotta, J. Aus der Au, G. J. Spühler, F. Morier-Genoud, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “Widely tunable pulse durations from a passively mode-locked thin-disk Yb:YAG laser,” Opt. Lett. 26(6), 379–381 (2001), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-6-379 .
[CrossRef]

F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
[CrossRef]

F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(6), 569–579 (1995).
[CrossRef]

Khodova, G. V.

A. G. Vladimirov, N. N. Rozanov, S. V. Fedorov, and G. V. Khodova, “Bifurcation analysis of laser autosolitons,” Quantum Electron. 27(11), 949–952 (1997).
[CrossRef]

Kurtner, F. X.

F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

L’huillier, J. A.

Lucca, A.

Lührmann, M.

Malomed, B. A.

B. A. Malomed, A. G. Vladimirov, and V. Galina, “Stable autosolitons in dispersive media with saturable gain and absorption,” Phys. Lett. A 274(3-4), 111–116 (2000).
[CrossRef]

Morier-Genoud, F.

Moser, M.

Paschotta, R.

Reali, G.

Rozanov, N. N.

A. G. Vladimirov, N. N. Rozanov, S. V. Fedorov, and G. V. Khodova, “Bifurcation analysis of laser autosolitons,” Quantum Electron. 27(11), 949–952 (1997).
[CrossRef]

Saruwatari, M.

A. Takada, K. Sato, M. Saruwatari, and M. Yamamoto, “Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MOW laser/MQW electroabsorption modulator,” Electron. Lett. 30(11), 898–900 (1994).
[CrossRef]

Sato, K.

A. Takada, K. Sato, M. Saruwatari, and M. Yamamoto, “Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MOW laser/MQW electroabsorption modulator,” Electron. Lett. 30(11), 898–900 (1994).
[CrossRef]

Spühler, G. J.

Takada, A.

A. Takada, K. Sato, M. Saruwatari, and M. Yamamoto, “Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MOW laser/MQW electroabsorption modulator,” Electron. Lett. 30(11), 898–900 (1994).
[CrossRef]

Theobald, C.

Tomaselli, A.

van Driel, H. M.

Vladimirov, A. G.

B. A. Malomed, A. G. Vladimirov, and V. Galina, “Stable autosolitons in dispersive media with saturable gain and absorption,” Phys. Lett. A 274(3-4), 111–116 (2000).
[CrossRef]

A. G. Vladimirov, N. N. Rozanov, S. V. Fedorov, and G. V. Khodova, “Bifurcation analysis of laser autosolitons,” Quantum Electron. 27(11), 949–952 (1997).
[CrossRef]

Walker, D. R.

Wallenstein, R.

Weingarten, K.

K. Weingarten, “High Energy Picosecond Lasers: Ready for Prime Time,” Laser Technik Journal 6(3), 51–54 (2009).
[CrossRef]

Weingarten, K. J.

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
[CrossRef]

Yamamoto, M.

A. Takada, K. Sato, M. Saruwatari, and M. Yamamoto, “Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MOW laser/MQW electroabsorption modulator,” Electron. Lett. 30(11), 898–900 (1994).
[CrossRef]

Appl. Phys. B (3)

B. Braun, K. J. Weingarten, F. X. Kärtner, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(5), 429–437 (1995).
[CrossRef]

F. X. Kärtner, B. Braun, and U. Keller, “Continuous-wave mode-locked solid-state lasers with enhanced spatial hole burning,” Appl. Phys. B 61(6), 569–579 (1995).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B 79(3), 331–339 (2004).
[CrossRef]

Electron. Lett. (1)

A. Takada, K. Sato, M. Saruwatari, and M. Yamamoto, “Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MOW laser/MQW electroabsorption modulator,” Electron. Lett. 30(11), 898–900 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

F. X. Kurtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What's the difference?” IEEE J. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Technik Journal (1)

K. Weingarten, “High Energy Picosecond Lasers: Ready for Prime Time,” Laser Technik Journal 6(3), 51–54 (2009).
[CrossRef]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Lett. A (1)

B. A. Malomed, A. G. Vladimirov, and V. Galina, “Stable autosolitons in dispersive media with saturable gain and absorption,” Phys. Lett. A 274(3-4), 111–116 (2000).
[CrossRef]

Prog. Opt. (1)

U. Keller, “Ultrafast solid-state lasers,” Prog. Opt. 46, 1–115 (2004).
[CrossRef]

Quantum Electron. (1)

A. G. Vladimirov, N. N. Rozanov, S. V. Fedorov, and G. V. Khodova, “Bifurcation analysis of laser autosolitons,” Quantum Electron. 27(11), 949–952 (1997).
[CrossRef]

Other (2)

C. J. Flood, D. R. Walker, and H. M. van Driel, “Role of Spatial Hole Burning in an Actively Mode-Locked Solid-State Laser, ” in Advanced Solid State Lasers, B. Chai and S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, 1995), paper PL1 http://www.opticsinfobase.org/abstract.cfm?URI=ASSL-1995-PL1 .

E. Gratton and M. J. van de Ven, “Laser sources for confocal microscopy,” in Handbook of Biological confocal microscopy, James B. Pawley, ed. (Springer Science + Business Media, LLC, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Setup of the dual-gain-medium, pulse width tunable laser. M1, M3, plano-concave mirrors; M2, input coupler; M1, output coupler (T = 7% at 1064nm).

Fig. 2
Fig. 2

The left figure shows output power versus pump power of GM laser. The right figure shows the measured autocorrelation trace of the mode-locked pulses (blue spots) and Gaussian fitting (red solid line).

Fig. 3
Fig. 3

The left figure shows output power versus pump power of GE laser. The right figure shows the measured autocorrelation trace of the mode-locked pulses (blue spots) and Gaussian fitting (red solid line).

Fig. 4
Fig. 4

The pulse width and the output power versus total pump power.

Fig. 5
Fig. 5

Mode-lock pulse calculated from Eq. (1) for both GM and GE configuration.

Fig. 6
Fig. 6

The calculated pulse width versus total pump ratio.

Fig. 7
Fig. 7

RF spectrum of the mode-locked laser measured at state 2 (hybrid state) with maximum output power.

Fig. 8
Fig. 8

Beam-quality measurements at output power of 3.2 W.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E z = i 2 E t 2 + E ( 1 a 0 1 + | E | 2 I a + g E 1 + [ 1 cos ( ω S H B t ) ] | E | 2 I G E + g M 1 + | E | 2 I G M )

Metrics