Abstract

We propose a technique for the generation of broadband optical single sideband modulated signals. The technique is based on optically processing an optical double sideband signal using stimulated Brillouin scattering effect. An unwanted sideband suppression over 40 dB in a broadband range from 50 MHz to 20 GHz is experimentally demonstrated. In addition, we apply the generated optical single sideband signal for the spectral characterization of polarization dependent parameters of optical components. The experimental characterization of the polarization dependent loss and the differential group delay of a phase-shifted fiber Bragg grating is performed in order to demonstrate the feasibility of the technique.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
    [CrossRef]
  2. G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-Scan Interferometric Component Analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003).
    [CrossRef]
  3. J. E. Román, M. Y. Frankel, and R. D. Esman, “Spectral characterization of fiber gratings with high resolution,” Opt. Lett. 23(12), 939–941 (1998).
    [CrossRef]
  4. R. Hernández, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004).
    [CrossRef]
  5. A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29(6), 638–640 (2004).
    [CrossRef] [PubMed]
  6. D. J. Krause, J. C. Cartledge, L. Jakober, and K. Roberts, “Measurement of passive optical components using a carrier and single sideband,” in Proc. Optical Fiber Communications Conference, (OFC’2006) paper OFN5 (2006).
  7. T. Kawanishi, T. Sakamoto, and M. Izutsu, “Optical filter characterization by using optical frequency sweep technique with a single sideband modulator,” IEICE Electron. Express 3(3), 34–38 (2006).
    [CrossRef]
  8. D. K. Gifford, B. J. Soller, M. S. Wolfe, and M. E. Froggatt, “Optical vector network analyzer for single-scan measurements of loss, group delay, and polarization mode dispersion,” Appl. Opt. 44(34), 7282–7286 (2005).
    [CrossRef] [PubMed]
  9. B. L. Heffner, “Deterministic, analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photon. Technol. Lett. 4, 451–454 (1992).
    [CrossRef]
  10. B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4,1066–1069 (1992).
    [CrossRef]
  11. R. M. Craig, “Accurate Spectral Characterization of Polarization-Dependent Loss,” J. Lightwave Technol. 21(2), 432–437 (2003).
    [CrossRef]
  12. P. A. Williams, “Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm,” Electron. Lett. 35(18), 1578–1579 (1999).
    [CrossRef]
  13. Y. Shi, L. Yan, and X. S. Yao, “Automatic Maximum-Minimum Search Method for Accurate PDL and DOP Characterization,” J. Lightwave Technol. 24(11), 4006–4012 (2006).
    [CrossRef]
  14. M. Sagues, M. Pérez, and A. Loayssa, “Measurement of polarization dependent loss, polarization mode dispersion and group delay of optical components using swept optical single sideband modulated signals,” Opt. Express 16(20), 16181–16188 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16181 .
    [CrossRef] [PubMed]
  15. G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
    [CrossRef]
  16. T. Fujiwara, and K. Kikushima, “140 Carrier, 20GHz SCM Signal Transmission across 200km SMF by Two-step Sideband Suppression Scheme in Optical SSB Modulation,” in Proc. Optical Fiber Communications Conference, (OFC’2007) paper OME2 (2007).
  17. K. Takano, N. Hanzawa, S. Tanji, and K. Nakagawa, “Experimental Demonstration of Optically Phase-Shifted SSB Modulation with Fiber-Based Optical Hilbert Transformers,” in Proc. Optical Fiber Communications Conference, (OFC’2007) paper JThA48 (2007).
  18. K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
    [CrossRef]
  19. T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16(6), 1534–1536 (2004).
    [CrossRef]
  20. D. Fonseca, A. V. Cartaxo, and P. Monteiro, “Adaptive Optoelectronic Filter for Improved Optical Single Sideband Generation,” IEEE Photon. Technol. Lett. 18(2), 415–417 (2006).
    [CrossRef]
  21. H. Kim, “EML-Based Optical Single Sideband Transmitter,” IEEE Photon. Technol. Lett. 20(4), 243–245 (2008).
    [CrossRef]
  22. G. P. Agrawal, Nonlinear Fiber Optics (San Diego: Academic Press, 3rd Edition, 2001).
  23. X. S. Yao, “Brillouin Selective Sideband Amplification of Microwave Photonic Signals,” IEEE Photon. Technol. Lett. 10(1), 138–141 (1998).
    [CrossRef]
  24. Y. Shen, X. Zhang, and K. Chen, “Modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
    [CrossRef]
  25. M. González Herráez, K.-Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14(4), 1395–1400 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1395 .
    [CrossRef] [PubMed]
  26. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-Bandwidth SBS slow light in optical fibers,” in Proc. Optical Fiber Communications Conference, (OFC’2006), paper PDP1, (2006).
  27. M. Sagues, G. Beloki, and A. Loayssa, “Broadband Swept Optical Single-sideband Modulation Generation for Spectral Characterization of Optical Components,” European Conference on Optical Communication (ECOC'2007), paper 6.6.6, 2007.
  28. W. Kaiser, and M. Maier, “Stimulated Rayleigh, Brillouin and Raman Spectroscopy,” Laser Handbook, Vol. 2, Chap. E2 (Amsterdam: North-Holland, 1972).
  29. M. Sagues, A. Loayssa, and J. Capmany, “Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007).
    [CrossRef]
  30. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
    [CrossRef]
  31. R. Montgomery and R. DeSalvo, “A Novel Technique for Double Sideband Suppressed Carrier Modulation of Optical Fields,” IEEE Photon. Technol. Lett. 7(4), 434–436 (1995).
    [CrossRef]
  32. M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [CrossRef]
  33. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As(2)Se(3) chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5860 .
    [CrossRef] [PubMed]
  34. D. Derickson, Fiber Optics Test and Measurement (Prentice Hall PTR, 1998).

2008 (2)

2007 (1)

M. Sagues, A. Loayssa, and J. Capmany, “Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007).
[CrossRef]

2006 (6)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

M. González Herráez, K.-Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14(4), 1395–1400 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1395 .
[CrossRef] [PubMed]

D. Fonseca, A. V. Cartaxo, and P. Monteiro, “Adaptive Optoelectronic Filter for Improved Optical Single Sideband Generation,” IEEE Photon. Technol. Lett. 18(2), 415–417 (2006).
[CrossRef]

K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, “Highly efficient Brillouin slow and fast light using As(2)Se(3) chalcogenide fiber,” Opt. Express 14(13), 5860–5865 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-5860 .
[CrossRef] [PubMed]

Y. Shi, L. Yan, and X. S. Yao, “Automatic Maximum-Minimum Search Method for Accurate PDL and DOP Characterization,” J. Lightwave Technol. 24(11), 4006–4012 (2006).
[CrossRef]

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Optical filter characterization by using optical frequency sweep technique with a single sideband modulator,” IEICE Electron. Express 3(3), 34–38 (2006).
[CrossRef]

2005 (2)

2004 (3)

R. Hernández, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004).
[CrossRef]

A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29(6), 638–640 (2004).
[CrossRef] [PubMed]

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16(6), 1534–1536 (2004).
[CrossRef]

2003 (2)

R. M. Craig, “Accurate Spectral Characterization of Polarization-Dependent Loss,” J. Lightwave Technol. 21(2), 432–437 (2003).
[CrossRef]

G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-Scan Interferometric Component Analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003).
[CrossRef]

2001 (2)

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[CrossRef]

1999 (1)

P. A. Williams, “Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm,” Electron. Lett. 35(18), 1578–1579 (1999).
[CrossRef]

1998 (2)

J. E. Román, M. Y. Frankel, and R. D. Esman, “Spectral characterization of fiber gratings with high resolution,” Opt. Lett. 23(12), 939–941 (1998).
[CrossRef]

X. S. Yao, “Brillouin Selective Sideband Amplification of Microwave Photonic Signals,” IEEE Photon. Technol. Lett. 10(1), 138–141 (1998).
[CrossRef]

1997 (2)

M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[CrossRef]

1995 (1)

R. Montgomery and R. DeSalvo, “A Novel Technique for Double Sideband Suppressed Carrier Modulation of Optical Fields,” IEEE Photon. Technol. Lett. 7(4), 434–436 (1995).
[CrossRef]

1992 (2)

B. L. Heffner, “Deterministic, analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photon. Technol. Lett. 4, 451–454 (1992).
[CrossRef]

B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4,1066–1069 (1992).
[CrossRef]

Abedin, K. S.

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[CrossRef]

Baney, D. M.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-Scan Interferometric Component Analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003).
[CrossRef]

Benito, D.

R. Hernández, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004).
[CrossRef]

A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29(6), 638–640 (2004).
[CrossRef] [PubMed]

Capmany, J.

M. Sagues, A. Loayssa, and J. Capmany, “Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007).
[CrossRef]

Cartaxo, A. V.

D. Fonseca, A. V. Cartaxo, and P. Monteiro, “Adaptive Optoelectronic Filter for Improved Optical Single Sideband Generation,” IEEE Photon. Technol. Lett. 18(2), 415–417 (2006).
[CrossRef]

Chen, K.

Y. Shen, X. Zhang, and K. Chen, “Modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[CrossRef]

Craig, R. M.

DeSalvo, R.

R. Montgomery and R. DeSalvo, “A Novel Technique for Double Sideband Suppressed Carrier Modulation of Optical Fields,” IEEE Photon. Technol. Lett. 7(4), 434–436 (1995).
[CrossRef]

Esman, R. D.

Fonseca, D.

D. Fonseca, A. V. Cartaxo, and P. Monteiro, “Adaptive Optoelectronic Filter for Improved Optical Single Sideband Generation,” IEEE Photon. Technol. Lett. 18(2), 415–417 (2006).
[CrossRef]

Frankel, M. Y.

Froggatt, M. E.

Galech, S.

Gifford, D. K.

González Herráez, M.

Hashimoto, Y.

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[CrossRef]

Heffner, B. L.

B. L. Heffner, “Deterministic, analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photon. Technol. Lett. 4, 451–454 (1992).
[CrossRef]

B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4,1066–1069 (1992).
[CrossRef]

Hernández, R.

A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29(6), 638–640 (2004).
[CrossRef] [PubMed]

R. Hernández, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004).
[CrossRef]

Higuma, K.

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[CrossRef]

Hotate, K.

Izutsu, M.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Optical filter characterization by using optical frequency sweep technique with a single sideband modulator,” IEICE Electron. Express 3(3), 34–38 (2006).
[CrossRef]

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16(6), 1534–1536 (2004).
[CrossRef]

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[CrossRef]

Kawanishi, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Optical filter characterization by using optical frequency sweep technique with a single sideband modulator,” IEICE Electron. Express 3(3), 34–38 (2006).
[CrossRef]

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16(6), 1534–1536 (2004).
[CrossRef]

Kim, H.

H. Kim, “EML-Based Optical Single Sideband Transmitter,” IEEE Photon. Technol. Lett. 20(4), 243–245 (2008).
[CrossRef]

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

Loayssa, A.

M. Sagues, M. Pérez, and A. Loayssa, “Measurement of polarization dependent loss, polarization mode dispersion and group delay of optical components using swept optical single sideband modulated signals,” Opt. Express 16(20), 16181–16188 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16181 .
[CrossRef] [PubMed]

M. Sagues, A. Loayssa, and J. Capmany, “Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

R. Hernández, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004).
[CrossRef]

A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29(6), 638–640 (2004).
[CrossRef] [PubMed]

Ludvigsen, H.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

Monteiro, P.

D. Fonseca, A. V. Cartaxo, and P. Monteiro, “Adaptive Optoelectronic Filter for Improved Optical Single Sideband Generation,” IEEE Photon. Technol. Lett. 18(2), 415–417 (2006).
[CrossRef]

Montgomery, R.

R. Montgomery and R. DeSalvo, “A Novel Technique for Double Sideband Suppressed Carrier Modulation of Optical Fields,” IEEE Photon. Technol. Lett. 7(4), 434–436 (1995).
[CrossRef]

Motamedi, A. R.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-Scan Interferometric Component Analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003).
[CrossRef]

Nagata, H.

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[CrossRef]

Niemi, T.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

Nikles, M.

M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[CrossRef]

Oikawa, S.

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[CrossRef]

Pérez, M.

Robert, P.

M. Nikles, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Román, J. E.

Sagues, M.

Sakamoto, T.

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Optical filter characterization by using optical frequency sweep technique with a single sideband modulator,” IEICE Electron. Express 3(3), 34–38 (2006).
[CrossRef]

Shen, Y.

Y. Shen, X. Zhang, and K. Chen, “Modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[CrossRef]

Shi, Y.

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[CrossRef]

Soller, B. J.

Song, K. Y.

Song, K.-Y.

Thévenaz, L.

Uusimaa, M.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-Scan Interferometric Component Analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003).
[CrossRef]

Williams, P. A.

P. A. Williams, “Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm,” Electron. Lett. 35(18), 1578–1579 (1999).
[CrossRef]

Wolfe, M. S.

Yan, L.

Yao, X. S.

Y. Shi, L. Yan, and X. S. Yao, “Automatic Maximum-Minimum Search Method for Accurate PDL and DOP Characterization,” J. Lightwave Technol. 24(11), 4006–4012 (2006).
[CrossRef]

X. S. Yao, “Brillouin Selective Sideband Amplification of Microwave Photonic Signals,” IEEE Photon. Technol. Lett. 10(1), 138–141 (1998).
[CrossRef]

Zhang, X.

Y. Shen, X. Zhang, and K. Chen, “Modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (3)

P. A. Williams, “Modulation phase-shift measurement of PMD using only four launched polarization states: a new algorithm,” Electron. Lett. 35(18), 1578–1579 (1999).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[CrossRef]

K. Higuma, S. Oikawa, Y. Hashimoto, H. Nagata, and M. Izutsu, “X-cut lithium niobate optical single-sideband modulator,” Electron. Lett. 37(8), 515–516 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (12)

T. Kawanishi and M. Izutsu, “Linear single-sideband modulation for high-SNR wavelength conversion,” IEEE Photon. Technol. Lett. 16(6), 1534–1536 (2004).
[CrossRef]

D. Fonseca, A. V. Cartaxo, and P. Monteiro, “Adaptive Optoelectronic Filter for Improved Optical Single Sideband Generation,” IEEE Photon. Technol. Lett. 18(2), 415–417 (2006).
[CrossRef]

H. Kim, “EML-Based Optical Single Sideband Transmitter,” IEEE Photon. Technol. Lett. 20(4), 243–245 (2008).
[CrossRef]

B. L. Heffner, “Deterministic, analytically complete measurement of polarization dependent transmission through optical devices,” IEEE Photon. Technol. Lett. 4, 451–454 (1992).
[CrossRef]

B. L. Heffner, “Automated Measurement of Polarization Mode Dispersion Using Jones Matrix Eigenanalysis,” IEEE Photon. Technol. Lett. 4,1066–1069 (1992).
[CrossRef]

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett. 13(12), 1334–1336 (2001).
[CrossRef]

G. D. VanWiggeren, A. R. Motamedi, and D. M. Baney, “Single-Scan Interferometric Component Analyzer,” IEEE Photon. Technol. Lett. 15(2), 263–265 (2003).
[CrossRef]

X. S. Yao, “Brillouin Selective Sideband Amplification of Microwave Photonic Signals,” IEEE Photon. Technol. Lett. 10(1), 138–141 (1998).
[CrossRef]

Y. Shen, X. Zhang, and K. Chen, “Modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[CrossRef]

M. Sagues, A. Loayssa, and J. Capmany, “Multitap complex-coefficient incoherent microwave photonic filters based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 19(16), 1194–1196 (2007).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18(1), 208–210 (2006).
[CrossRef]

R. Montgomery and R. DeSalvo, “A Novel Technique for Double Sideband Suppressed Carrier Modulation of Optical Fields,” IEEE Photon. Technol. Lett. 7(4), 434–436 (1995).
[CrossRef]

IEICE Electron. Express (1)

T. Kawanishi, T. Sakamoto, and M. Izutsu, “Optical filter characterization by using optical frequency sweep technique with a single sideband modulator,” IEICE Electron. Express 3(3), 34–38 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Eng. (1)

R. Hernández, A. Loayssa, and D. Benito, “Optical vector network analysis based on single-sideband modulation,” Opt. Eng. 43(10), 2418–2421 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Other (8)

D. J. Krause, J. C. Cartledge, L. Jakober, and K. Roberts, “Measurement of passive optical components using a carrier and single sideband,” in Proc. Optical Fiber Communications Conference, (OFC’2006) paper OFN5 (2006).

T. Fujiwara, and K. Kikushima, “140 Carrier, 20GHz SCM Signal Transmission across 200km SMF by Two-step Sideband Suppression Scheme in Optical SSB Modulation,” in Proc. Optical Fiber Communications Conference, (OFC’2007) paper OME2 (2007).

K. Takano, N. Hanzawa, S. Tanji, and K. Nakagawa, “Experimental Demonstration of Optically Phase-Shifted SSB Modulation with Fiber-Based Optical Hilbert Transformers,” in Proc. Optical Fiber Communications Conference, (OFC’2007) paper JThA48 (2007).

G. P. Agrawal, Nonlinear Fiber Optics (San Diego: Academic Press, 3rd Edition, 2001).

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-Bandwidth SBS slow light in optical fibers,” in Proc. Optical Fiber Communications Conference, (OFC’2006), paper PDP1, (2006).

M. Sagues, G. Beloki, and A. Loayssa, “Broadband Swept Optical Single-sideband Modulation Generation for Spectral Characterization of Optical Components,” European Conference on Optical Communication (ECOC'2007), paper 6.6.6, 2007.

W. Kaiser, and M. Maier, “Stimulated Rayleigh, Brillouin and Raman Spectroscopy,” Laser Handbook, Vol. 2, Chap. E2 (Amsterdam: North-Holland, 1972).

D. Derickson, Fiber Optics Test and Measurement (Prentice Hall PTR, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Fundamentals of the SBS based OSSB modulation technique. SBS processing is performed by counterpropagating pump and Stokes waves (in blue) with an ODSB modulated signal. (a) Unprocessed ODSB signal, (b) OSSB signal obtained by amplification of the upper sideband and attenuation of the lower sideband of the ODSB signal.

Fig. 2
Fig. 2

Fundamentals of the SBS based OSSB modulation technique for the case where the lower sideband is amplified. Two cases are depicted as a function of the relation between f R F and ν B : (a) f R F ν B and (b) f R F ν B . The OSSB signal (in red) is obtained by counterpropagating an ODSB signal with pump and Stokes waves (in blue).

Fig. 3
Fig. 3

(a) Sideband amplification and (b) sideband attenuation as a function of pump and Stokes power. Sideband power of the ODSB signal is set to −33 dBm.

Fig. 4
Fig. 4

Unwanted sideband suppression ratio as a function of pump and Stokes power and of sideband power.

Fig. 5
Fig. 5

Unwanted sideband suppression ratio as a function of RF modulation frequency of the ODSB signal. (a) Lower sideband amplification (Fig. 2) and (b) upper sideband amplification (Fig. 1). The pump and Stokes waves power at the input of the fiber was 9 dBm, and the sideband power of the ODSB signal at the input of the fiber was −33 dBm.

Fig. 6
Fig. 6

Experimental setup of the OSSB modulator.

Fig. 7
Fig. 7

Optical spectrum of the OSSB signal (black solid line) and the original ODSB signal (blue dashed line) for a 10.5 GHz modulation frequency.

Fig. 8
Fig. 8

Unwanted sideband suppression as a function of the modulation frequency fRF of the OSSB signal.

Fig. 9
Fig. 9

Experimental setup for the characterization of optical components, using the SBS based OSSB modulator.

Fig. 10
Fig. 10

Amplitude and phase-shift spectral characterization of a PS-FBG using the OSSB modulation technique introduced in the paper. For the amplitude, a lower frequency resolution measurement done with a commercial OSA is also shown (symbols).

Fig. 11
Fig. 11

Characterization of the PDL and DGD of the PS-FBG using the OSSB technique (red solid line) and the modulation phase-shift method (black symbols).

Tables (1)

Tables Icon

Table 1 Frequency Separation f e

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

d I U S B d z = g B ( Δ ν U S B ) I P I U S B α I U S B d I P d z = g B ( Δ ν U S B ) I P I U S B + α I P
g B ( Δ ν ) = g B ( Δ ν B / 2 ) 2 Δ ν 2 + ( Δ ν B / 2 ) 2
ν P = ν B p + ν U S B
f e p = ν B p + f R F
d I L S B d z = g B ( Δ ν L S B ) I L S B I S α I L S B d I S d z = g B ( Δ ν L S B ) I L S B I S + α I S
f e S = f R F + v B S
f e = f e S = f e p
ν B = 2 n ν A c ν p
E i n ( t ) = A o e j 2 π ν o t + A S B e j 2 π ( ν o + f R F ) t
i o u t ( t ) | f = f R F | A o | | A S B | | H ( ν o ) | | H ( ν o + f R F ) | ×           × cos ( 2 π f R F t ϕ o + ϕ S B arg ( H ( ν o ) ) + arg ( H ( ν o + f R F ) ) )
f R F = f e = ν B 2
f R F = 2 f e = 2 ν B 3
f R F = 2 f e = 2 ν B
f R F = ν B f e = 0
f R F = ν B = ν P ν U S B

Metrics