Abstract

Compact hyperspectral sensors potentially have a wide range of applications, including machine vision, quality control, and surveillance from small Unmanned Aerial Vehicles (UAVs). With the development of Indium Gallium Arsenide (InGaAs) focal plane arrays, much of the Short Wave Infra-Red (SWIR) spectral regime can be accessed with a small hyperspectral imaging system, thereby substantially expanding hyperspectral sensing capabilities. To fully realize this potential, system performance must be well-understood. Here, stray light characterization of a recently-developed push-broom hyperspectral sensor sensitive in the 1 μm −1.7 μm spectral regime is described. The sensor utilizes anamorphic fore-optics that partially decouple image formation along the spatial and spectral axes of the instrument. This design benefits from a reduction in complexity over standard high-performance spectrometer optical designs while maintaining excellent aberration control and spatial and spectral distortion characteristics. The stray light performance characteristics of the anamorphic imaging spectrometer were measured using the spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCUS) facility at the National Institute of Standards and Technology (NIST). A description of the measurements and results are presented. Additionally, a stray-light matrix was assembled for the instrument to improve the instrument’s spectral accuracy. Transmittance of a silicon wafer was measured to validate this approach.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Air Force Contract Number FA8650–05-C-1815.
  2. M. Kehoe, C. Smith, and R. Swanson, “Scalable Imaging Spectrometer,” U.S. Patent No. 7,199,877, 2007.
  3. R. C. Swanson, T. S. Moon, C. W. Smith, M. R. Kehoe, S. W. Brown, and K. R. Lykke, “Anamorphic Imaging Spectrometer,” Proc. SPIE 6940, 694010 (2008).
    [CrossRef]
  4. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “NIST facility for spectral irradiance and radiance responsivity calibrations with uniform sources,” Metrologia 37(5), 579–582 (2000).
    [CrossRef]
  5. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45(32), 8218–8237 (2006).
    [CrossRef] [PubMed]
  6. Y. Q. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45(6), 1111–1119 (2006).
    [CrossRef] [PubMed]
  7. M. D. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray Light Correction of the Marine Optical System,” J. Atmos. Ocean. Technol. 26(1), 57 (2009).
    [CrossRef]
  8. Y. Zong, S. W. Brown, G. Meister, R. A. Barnes, and K. R. Lykke, “Characterization and correction of stray light in optical instruments,” Proc. of SPIE, 6744, 67441L.
  9. H. Noda, T. Namioka, and M. Seya, “Geometric Theory of Grating,” J. Opt. Soc. Am. 64(8), 1031 (1974).
    [CrossRef]
  10. J. M. Sasián, “Aberrations from a prism and a grating,” Appl. Opt. 39(1), 34–39 (2000).
    [CrossRef]
  11. J. M. Simon and M. A. Gil, “Diffraction gratings and optical aberrations,” Appl. Opt. 23(7), 1075 (1984).
    [CrossRef] [PubMed]
  12. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment are necessarily the best available for the purpose.
  13. S. W. Brown, B. C. Johnson, and H.W. Yoon, “Description of a portable spectroradiometer to validate EOS radiance scales in the shortwave infrared,” Earth Observer 10 (1998).

2009 (1)

M. D. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray Light Correction of the Marine Optical System,” J. Atmos. Ocean. Technol. 26(1), 57 (2009).
[CrossRef]

2008 (1)

R. C. Swanson, T. S. Moon, C. W. Smith, M. R. Kehoe, S. W. Brown, and K. R. Lykke, “Anamorphic Imaging Spectrometer,” Proc. SPIE 6940, 694010 (2008).
[CrossRef]

2006 (2)

2000 (2)

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “NIST facility for spectral irradiance and radiance responsivity calibrations with uniform sources,” Metrologia 37(5), 579–582 (2000).
[CrossRef]

J. M. Sasián, “Aberrations from a prism and a grating,” Appl. Opt. 39(1), 34–39 (2000).
[CrossRef]

1984 (1)

1974 (1)

Brown, S. W.

M. D. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray Light Correction of the Marine Optical System,” J. Atmos. Ocean. Technol. 26(1), 57 (2009).
[CrossRef]

R. C. Swanson, T. S. Moon, C. W. Smith, M. R. Kehoe, S. W. Brown, and K. R. Lykke, “Anamorphic Imaging Spectrometer,” Proc. SPIE 6940, 694010 (2008).
[CrossRef]

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45(32), 8218–8237 (2006).
[CrossRef] [PubMed]

Y. Q. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45(6), 1111–1119 (2006).
[CrossRef] [PubMed]

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “NIST facility for spectral irradiance and radiance responsivity calibrations with uniform sources,” Metrologia 37(5), 579–582 (2000).
[CrossRef]

Clark, D. K.

M. D. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray Light Correction of the Marine Optical System,” J. Atmos. Ocean. Technol. 26(1), 57 (2009).
[CrossRef]

Eppeldauer, G. P.

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45(32), 8218–8237 (2006).
[CrossRef] [PubMed]

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “NIST facility for spectral irradiance and radiance responsivity calibrations with uniform sources,” Metrologia 37(5), 579–582 (2000).
[CrossRef]

Feinholz, M. D.

M. D. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray Light Correction of the Marine Optical System,” J. Atmos. Ocean. Technol. 26(1), 57 (2009).
[CrossRef]

Flora, S. J.

M. D. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray Light Correction of the Marine Optical System,” J. Atmos. Ocean. Technol. 26(1), 57 (2009).
[CrossRef]

Gil, M. A.

Johnson, B. C.

M. D. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray Light Correction of the Marine Optical System,” J. Atmos. Ocean. Technol. 26(1), 57 (2009).
[CrossRef]

Y. Q. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45(6), 1111–1119 (2006).
[CrossRef] [PubMed]

Kehoe, M. R.

R. C. Swanson, T. S. Moon, C. W. Smith, M. R. Kehoe, S. W. Brown, and K. R. Lykke, “Anamorphic Imaging Spectrometer,” Proc. SPIE 6940, 694010 (2008).
[CrossRef]

Lykke, K. R.

M. D. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray Light Correction of the Marine Optical System,” J. Atmos. Ocean. Technol. 26(1), 57 (2009).
[CrossRef]

R. C. Swanson, T. S. Moon, C. W. Smith, M. R. Kehoe, S. W. Brown, and K. R. Lykke, “Anamorphic Imaging Spectrometer,” Proc. SPIE 6940, 694010 (2008).
[CrossRef]

Y. Q. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, and Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45(6), 1111–1119 (2006).
[CrossRef] [PubMed]

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45(32), 8218–8237 (2006).
[CrossRef] [PubMed]

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “NIST facility for spectral irradiance and radiance responsivity calibrations with uniform sources,” Metrologia 37(5), 579–582 (2000).
[CrossRef]

Moon, T. S.

R. C. Swanson, T. S. Moon, C. W. Smith, M. R. Kehoe, S. W. Brown, and K. R. Lykke, “Anamorphic Imaging Spectrometer,” Proc. SPIE 6940, 694010 (2008).
[CrossRef]

Namioka, T.

Noda, H.

Ohno, Y.

Sasián, J. M.

Seya, M.

Simon, J. M.

Smith, C. W.

R. C. Swanson, T. S. Moon, C. W. Smith, M. R. Kehoe, S. W. Brown, and K. R. Lykke, “Anamorphic Imaging Spectrometer,” Proc. SPIE 6940, 694010 (2008).
[CrossRef]

Swanson, R. C.

R. C. Swanson, T. S. Moon, C. W. Smith, M. R. Kehoe, S. W. Brown, and K. R. Lykke, “Anamorphic Imaging Spectrometer,” Proc. SPIE 6940, 694010 (2008).
[CrossRef]

Yarbrough, M. A.

M. D. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray Light Correction of the Marine Optical System,” J. Atmos. Ocean. Technol. 26(1), 57 (2009).
[CrossRef]

Zong, Y. Q.

Appl. Opt. (4)

J. Atmos. Ocean. Technol. (1)

M. D. Feinholz, S. J. Flora, M. A. Yarbrough, K. R. Lykke, S. W. Brown, B. C. Johnson, and D. K. Clark, “Stray Light Correction of the Marine Optical System,” J. Atmos. Ocean. Technol. 26(1), 57 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

Metrologia (1)

S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “NIST facility for spectral irradiance and radiance responsivity calibrations with uniform sources,” Metrologia 37(5), 579–582 (2000).
[CrossRef]

Proc. SPIE (1)

R. C. Swanson, T. S. Moon, C. W. Smith, M. R. Kehoe, S. W. Brown, and K. R. Lykke, “Anamorphic Imaging Spectrometer,” Proc. SPIE 6940, 694010 (2008).
[CrossRef]

Other (5)

Air Force Contract Number FA8650–05-C-1815.

M. Kehoe, C. Smith, and R. Swanson, “Scalable Imaging Spectrometer,” U.S. Patent No. 7,199,877, 2007.

Y. Zong, S. W. Brown, G. Meister, R. A. Barnes, and K. R. Lykke, “Characterization and correction of stray light in optical instruments,” Proc. of SPIE, 6744, 67441L.

Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment are necessarily the best available for the purpose.

S. W. Brown, B. C. Johnson, and H.W. Yoon, “Description of a portable spectroradiometer to validate EOS radiance scales in the shortwave infrared,” Earth Observer 10 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of an anamorphic imaging spectrometer. Using cylindrical mirrors instead of standard spherical optics simplifies the fore-optics, which results in reduced aberrations with relatively simple optics.

Fig. 2
Fig. 2

Photo of the anamorphic imaging spectrometer and the NIST integrating sphere used for characterization.

Fig. 3
Fig. 3

Stitched data for three laser wavelengths, 1078 nm (left), 1302 nm (middle), and 1572 nm (right), for three representative spatial pixels. The x-axis is the wavelength dimension and the y axis the laser line intensity in digital number (DN).

Fig. 4
Fig. 4

Surface plot (left) and contour plot (right) of the stray light distribution matrix for pixel number 160.

Fig. 5
Fig. 5

Expanded stray light corrected laser spectra. The x-axis is the wavelength dimension and the y axis the laser line intensity in digital number. The laser wavelengths for these plots are 1078.7 nm (left column), 1302.3 nm (center column), and 1572.6 nm (right column). Peak intensities were on the order of 3 x 104 on this scale.

Fig. 6
Fig. 6

Stray light correction of silicon data. For each panel, the x-axis is the spectral dimension (in nm). The light intensity in DN, correction magnitude in DN, and the percent of the stray light correction to the measurement data are plotted along the y-axis respectively.

Fig. 7
Fig. 7

Silicon transmittance (black, uncorrected results; red, stray light corrected results).

Fig. 8
Fig. 8

Percent change in silicon transmittance due to stray light corrections for pixel 250 (top), 160 (middle) and 20 (bottom).

Tables (1)

Tables Icon

Table 1 Prototype Anamorphic Imaging Spectrometer Specifications

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y m e a s , i = y I B , i + j n ( d i , j y I B , j )
Y m e a s = Y I B + D Y I B
Y m e a s = ( I + D ) Y I B = A Y I B
Y I B = A - 1 Y m e a s = C Y m e a s

Metrics