Abstract

This work proposes an optically controllable beam-steering device, fabricated using cholesteric liquid crystals (CLCs) that are doped with azobenzene. The trans-cis photoisomerization of azobenzene changes the pitch of the CLC fingerprint structure and shifts the diffraction angle. The diffraction angle increases when the cell is irradiated with UV light, and restored when it is irradiated with green light. Combining the photoisomerization effect with electrical effect, the CLC beam-steering device provides a steering angle of ~19°.The tuning is continuous and could be completed within a few seconds.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hirabayashi, T. Yamamoto, and M. Yamaguchi, “Free-Space Optical Interconnections with Liquid-Crystal Microprism Arrays,” Appl. Opt. 34(14), 2571–2580 (1995).
    [CrossRef] [PubMed]
  2. K. Hirabayashi and T. Kurokawa, “Liquid-Crystal Devices for Optical Communication and Information-Processing Systems,” Liq Cryst. 14(2), 307–317 (1993).
    [CrossRef]
  3. D. Faklis, and G. M. Morris, “Diffractive optics technology for display applications,” in (SPIE, 1995), 57–61.
  4. J. J. P. Drolet, E. Chuang, G. Barbastathis, and D. Psaltis, “Compact, integrated dynamic holographic memory with refreshed holograms,” Opt. Lett. 22(8), 552–554 (1997).
    [CrossRef] [PubMed]
  5. D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
    [CrossRef]
  6. C. M. Titus, P. J. Bos, and O. D. Lavrentovich, “Efficient accurate liquid crystal digital light deflector,” in (SPIE, 1999), 244–253.
  7. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
    [CrossRef]
  8. A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1334–1338 (2001).
    [CrossRef]
  9. N. V. Tabiryan and S. R. Nersisyan, “Large-angle beam steering using all-optical liquid crystal spatial light modulators,” Appl. Phys. Lett. 84(25), 5145–5147 (2004).
    [CrossRef]
  10. L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104(3), 033109 (2008).
    [CrossRef]
  11. J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15-16), 3969–3976 (2008).
    [CrossRef]
  12. N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17(2), 112–115 (2009).
    [CrossRef]
  13. E. Sackmann, S. Meiboom, L. C. Snyder, A. E. Meixner, and R. E. Dietz, “On the structure of the liquid crystalline state of cholesterol derivatives,” J. Am. Chem. Soc. 90(13), 3567–3569 (1968).
    [CrossRef] [PubMed]
  14. M. Kawachi, K. Kato, and O. Kogure, “Light-Scattering Characteristics in Nematic-Cholesteric Mixtures with Positive Dielectric Anisotropy,” Jpn. J. Appl. Phys. 17(7), 1245–1250 (1978).
    [CrossRef]
  15. V. Vinvogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Resihetnyak, “Photoinduced Change of Cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).
  16. T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
    [CrossRef]
  17. J. H. Liu and H. Y. Wang, “Optical switching behavior of polymer-dispersed liquid crystal composite films with various novel azobenzene derivatives,” J. Appl. Polym. Sci. 91(2), 789–799 (2004).
    [CrossRef]
  18. J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(Part 2, No. 11B), L1318–L1320 (2002).
    [CrossRef]
  19. S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
    [CrossRef]
  20. S. W. Kang, S. Sprunt, and L. C. Chien, “Polymer-stabilized cholesteric diffraction gratings: Effects of UV wavelength on polymer morphology and electrooptic properties,” Chem. Mater. 18(18), 4436–4441 (2006).
    [CrossRef]
  21. H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
    [CrossRef]
  22. L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
    [CrossRef] [PubMed]
  23. H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
    [CrossRef]
  24. P. G. d. Gennes, and J. Prost, The physics of liquid crystals, 2nd ed., Oxford science publications (Clarendon Press;Oxford University Press, Oxford New York, 1993), pp. xvi, 597 p.

2010

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[CrossRef] [PubMed]

2009

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17(2), 112–115 (2009).
[CrossRef]

2008

L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104(3), 033109 (2008).
[CrossRef]

J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15-16), 3969–3976 (2008).
[CrossRef]

2006

S. W. Kang, S. Sprunt, and L. C. Chien, “Polymer-stabilized cholesteric diffraction gratings: Effects of UV wavelength on polymer morphology and electrooptic properties,” Chem. Mater. 18(18), 4436–4441 (2006).
[CrossRef]

2004

J. H. Liu and H. Y. Wang, “Optical switching behavior of polymer-dispersed liquid crystal composite films with various novel azobenzene derivatives,” J. Appl. Polym. Sci. 91(2), 789–799 (2004).
[CrossRef]

N. V. Tabiryan and S. R. Nersisyan, “Large-angle beam steering using all-optical liquid crystal spatial light modulators,” Appl. Phys. Lett. 84(25), 5145–5147 (2004).
[CrossRef]

2002

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(Part 2, No. 11B), L1318–L1320 (2002).
[CrossRef]

2001

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1334–1338 (2001).
[CrossRef]

2000

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
[CrossRef]

1998

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

1997

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[CrossRef]

J. J. P. Drolet, E. Chuang, G. Barbastathis, and D. Psaltis, “Compact, integrated dynamic holographic memory with refreshed holograms,” Opt. Lett. 22(8), 552–554 (1997).
[CrossRef] [PubMed]

1995

1993

K. Hirabayashi and T. Kurokawa, “Liquid-Crystal Devices for Optical Communication and Information-Processing Systems,” Liq Cryst. 14(2), 307–317 (1993).
[CrossRef]

1990

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Resihetnyak, “Photoinduced Change of Cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

1978

M. Kawachi, K. Kato, and O. Kogure, “Light-Scattering Characteristics in Nematic-Cholesteric Mixtures with Positive Dielectric Anisotropy,” Jpn. J. Appl. Phys. 17(7), 1245–1250 (1978).
[CrossRef]

1968

E. Sackmann, S. Meiboom, L. C. Snyder, A. E. Meixner, and R. E. Dietz, “On the structure of the liquid crystalline state of cholesterol derivatives,” J. Am. Chem. Soc. 90(13), 3567–3569 (1968).
[CrossRef] [PubMed]

Aizawa, M.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Barbastathis, G.

Bennis, N.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17(2), 112–115 (2009).
[CrossRef]

Bos, P.

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[CrossRef]

Bos, P. J.

L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104(3), 033109 (2008).
[CrossRef]

Bricker, R. L.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

Bunning, T. J.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

Cerrolaza, B.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17(2), 112–115 (2009).
[CrossRef]

Chen, F. C.

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(Part 2, No. 11B), L1318–L1320 (2002).
[CrossRef]

Chen, S. H.

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(Part 2, No. 11B), L1318–L1320 (2002).
[CrossRef]

Chien, L. C.

S. W. Kang, S. Sprunt, and L. C. Chien, “Polymer-stabilized cholesteric diffraction gratings: Effects of UV wavelength on polymer morphology and electrooptic properties,” Chem. Mater. 18(18), 4436–4441 (2006).
[CrossRef]

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

Chuang, E.

Dabrowski, R.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17(2), 112–115 (2009).
[CrossRef]

De Sio, L.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[CrossRef] [PubMed]

Dietz, R. E.

E. Sackmann, S. Meiboom, L. C. Snyder, A. E. Meixner, and R. E. Dietz, “On the structure of the liquid crystalline state of cholesterol derivatives,” J. Am. Chem. Soc. 90(13), 3567–3569 (1968).
[CrossRef] [PubMed]

Doi, K.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

Drolet, J. J. P.

Ferjani, S.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[CrossRef] [PubMed]

Fuh, A. Y. G.

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1334–1338 (2001).
[CrossRef]

Fujisawa, T.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Geday, M. A.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17(2), 112–115 (2009).
[CrossRef]

Green, L.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

Gu, Z.

J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15-16), 3969–3976 (2008).
[CrossRef]

Harada, H.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

Hirabayashi, K.

K. Hirabayashi, T. Yamamoto, and M. Yamaguchi, “Free-Space Optical Interconnections with Liquid-Crystal Microprism Arrays,” Appl. Opt. 34(14), 2571–2580 (1995).
[CrossRef] [PubMed]

K. Hirabayashi and T. Kurokawa, “Liquid-Crystal Devices for Optical Communication and Information-Processing Systems,” Liq Cryst. 14(2), 307–317 (1993).
[CrossRef]

Hsieh, M. F.

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1334–1338 (2001).
[CrossRef]

Huang, C. Y.

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1334–1338 (2001).
[CrossRef]

Ikeda, T.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Kanazawa, A.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Kang, S. W.

S. W. Kang, S. Sprunt, and L. C. Chien, “Polymer-stabilized cholesteric diffraction gratings: Effects of UV wavelength on polymer morphology and electrooptic properties,” Chem. Mater. 18(18), 4436–4441 (2006).
[CrossRef]

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

Kato, K.

M. Kawachi, K. Kato, and O. Kogure, “Light-Scattering Characteristics in Nematic-Cholesteric Mixtures with Positive Dielectric Anisotropy,” Jpn. J. Appl. Phys. 17(7), 1245–1250 (1978).
[CrossRef]

Kawachi, M.

M. Kawachi, K. Kato, and O. Kogure, “Light-Scattering Characteristics in Nematic-Cholesteric Mixtures with Positive Dielectric Anisotropy,” Jpn. J. Appl. Phys. 17(7), 1245–1250 (1978).
[CrossRef]

Khizhnyak, A.

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Resihetnyak, “Photoinduced Change of Cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Kogure, O.

M. Kawachi, K. Kato, and O. Kogure, “Light-Scattering Characteristics in Nematic-Cholesteric Mixtures with Positive Dielectric Anisotropy,” Jpn. J. Appl. Phys. 17(7), 1245–1250 (1978).
[CrossRef]

Kurokawa, T.

K. Hirabayashi and T. Kurokawa, “Liquid-Crystal Devices for Optical Communication and Information-Processing Systems,” Liq Cryst. 14(2), 307–317 (1993).
[CrossRef]

Kutulya, L.

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Resihetnyak, “Photoinduced Change of Cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Lavrentovich, O. D.

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[CrossRef]

Lee, B.

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Lee, H. K.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Li, Q.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

Lin, C. H.

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1334–1338 (2001).
[CrossRef]

Liu, J. H.

J. H. Liu and H. Y. Wang, “Optical switching behavior of polymer-dispersed liquid crystal composite films with various novel azobenzene derivatives,” J. Appl. Polym. Sci. 91(2), 789–799 (2004).
[CrossRef]

Maker, P.

McManamon, P. F.

L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104(3), 033109 (2008).
[CrossRef]

Medialdea, D. P.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17(2), 112–115 (2009).
[CrossRef]

Meiboom, S.

E. Sackmann, S. Meiboom, L. C. Snyder, A. E. Meixner, and R. E. Dietz, “On the structure of the liquid crystalline state of cholesterol derivatives,” J. Am. Chem. Soc. 90(13), 3567–3569 (1968).
[CrossRef] [PubMed]

Meixner, A. E.

E. Sackmann, S. Meiboom, L. C. Snyder, A. E. Meixner, and R. E. Dietz, “On the structure of the liquid crystalline state of cholesterol derivatives,” J. Am. Chem. Soc. 90(13), 3567–3569 (1968).
[CrossRef] [PubMed]

Muller, R.

Natarajan, L. V.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

Nersisyan, S. R.

N. V. Tabiryan and S. R. Nersisyan, “Large-angle beam steering using all-optical liquid crystal spatial light modulators,” Appl. Phys. Lett. 84(25), 5145–5147 (2004).
[CrossRef]

Oton, J. M.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17(2), 112–115 (2009).
[CrossRef]

Psaltis, D.

Quintana, X.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17(2), 112–115 (2009).
[CrossRef]

Resihetnyak, V.

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Resihetnyak, “Photoinduced Change of Cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Reznikov, Y.

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Resihetnyak, “Photoinduced Change of Cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Sackmann, E.

E. Sackmann, S. Meiboom, L. C. Snyder, A. E. Meixner, and R. E. Dietz, “On the structure of the liquid crystalline state of cholesterol derivatives,” J. Am. Chem. Soc. 90(13), 3567–3569 (1968).
[CrossRef] [PubMed]

Serak, S.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[CrossRef] [PubMed]

Shi, L.

L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104(3), 033109 (2008).
[CrossRef]

Shiono, T.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

Shiyanovskii, S. V.

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[CrossRef]

Snyder, L. C.

E. Sackmann, S. Meiboom, L. C. Snyder, A. E. Meixner, and R. E. Dietz, “On the structure of the liquid crystalline state of cholesterol derivatives,” J. Am. Chem. Soc. 90(13), 3567–3569 (1968).
[CrossRef] [PubMed]

Spadlo, A.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17(2), 112–115 (2009).
[CrossRef]

Sprunt, S.

S. W. Kang, S. Sprunt, and L. C. Chien, “Polymer-stabilized cholesteric diffraction gratings: Effects of UV wavelength on polymer morphology and electrooptic properties,” Chem. Mater. 18(18), 4436–4441 (2006).
[CrossRef]

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

Su, X. Y.

J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15-16), 3969–3976 (2008).
[CrossRef]

Subacius, D.

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[CrossRef]

Tabiryan, N.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[CrossRef] [PubMed]

Tabiryan, N. V.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

N. V. Tabiryan and S. R. Nersisyan, “Large-angle beam steering using all-optical liquid crystal spatial light modulators,” Appl. Phys. Lett. 84(25), 5145–5147 (2004).
[CrossRef]

Tsutsumi, O.

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

Umeton, C.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[CrossRef] [PubMed]

Veltri, A.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[CrossRef] [PubMed]

Vinvogradov, V.

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Resihetnyak, “Photoinduced Change of Cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Wang, H. Y.

J. H. Liu and H. Y. Wang, “Optical switching behavior of polymer-dispersed liquid crystal composite films with various novel azobenzene derivatives,” J. Appl. Polym. Sci. 91(2), 789–799 (2004).
[CrossRef]

Wang, X.

White, T. J.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

Wilson, D.

Wu, J. J.

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(Part 2, No. 11B), L1318–L1320 (2002).
[CrossRef]

Wu, Y. S.

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(Part 2, No. 11B), L1318–L1320 (2002).
[CrossRef]

Xu, P.

J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15-16), 3969–3976 (2008).
[CrossRef]

Yamaguchi, M.

Yamamoto, T.

Yang, J. B.

J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15-16), 3969–3976 (2008).
[CrossRef]

Adv. Funct. Mater.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater. 19(21), 3484–3488 (2009).
[CrossRef]

Adv. Mater.

L. De Sio, S. Serak, N. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22(21), 2316–2319 (2010).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

S. W. Kang, S. Sprunt, and L. C. Chien, “Structure and morphology of polymer-stabilized cholesteric diffraction gratings,” Appl. Phys. Lett. 76(24), 3516–3518 (2000).
[CrossRef]

D. Subacius, S. V. Shiyanovskii, P. Bos, and O. D. Lavrentovich, “Cholesteric gratings with field-controlled period,” Appl. Phys. Lett. 71(23), 3323–3325 (1997).
[CrossRef]

N. V. Tabiryan and S. R. Nersisyan, “Large-angle beam steering using all-optical liquid crystal spatial light modulators,” Appl. Phys. Lett. 84(25), 5145–5147 (2004).
[CrossRef]

Chem. Mater.

S. W. Kang, S. Sprunt, and L. C. Chien, “Polymer-stabilized cholesteric diffraction gratings: Effects of UV wavelength on polymer morphology and electrooptic properties,” Chem. Mater. 18(18), 4436–4441 (2006).
[CrossRef]

H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, T. Fujisawa, M. Aizawa, and B. Lee, “All-optically controllable polymer liquid crystal composite films containing the azobenzene liquid crystal,” Chem. Mater. 10(5), 1402–1407 (1998).
[CrossRef]

J. Am. Chem. Soc.

E. Sackmann, S. Meiboom, L. C. Snyder, A. E. Meixner, and R. E. Dietz, “On the structure of the liquid crystalline state of cholesterol derivatives,” J. Am. Chem. Soc. 90(13), 3567–3569 (1968).
[CrossRef] [PubMed]

J. Appl. Phys.

L. Shi, P. F. McManamon, and P. J. Bos, “Liquid crystal optical phase plate with a variable in-plane gradient,” J. Appl. Phys. 104(3), 033109 (2008).
[CrossRef]

J. Appl. Polym. Sci.

J. H. Liu and H. Y. Wang, “Optical switching behavior of polymer-dispersed liquid crystal composite films with various novel azobenzene derivatives,” J. Appl. Polym. Sci. 91(2), 789–799 (2004).
[CrossRef]

J. Phys. Chem. B

H. K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[CrossRef]

Jpn. J. Appl. Phys.

J. J. Wu, Y. S. Wu, F. C. Chen, and S. H. Chen, “Formation of phase grating in planar aligned cholesteric liquid crystal film,” Jpn. J. Appl. Phys. 41(Part 2, No. 11B), L1318–L1320 (2002).
[CrossRef]

M. Kawachi, K. Kato, and O. Kogure, “Light-Scattering Characteristics in Nematic-Cholesteric Mixtures with Positive Dielectric Anisotropy,” Jpn. J. Appl. Phys. 17(7), 1245–1250 (1978).
[CrossRef]

A. Y. G. Fuh, C. H. Lin, M. F. Hsieh, and C. Y. Huang, “Cholesteric gratings doped with a dichroic dye,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1334–1338 (2001).
[CrossRef]

Liq Cryst.

K. Hirabayashi and T. Kurokawa, “Liquid-Crystal Devices for Optical Communication and Information-Processing Systems,” Liq Cryst. 14(2), 307–317 (1993).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Resihetnyak, “Photoinduced Change of Cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 192(1), 273–278 (1990).

Opt. Commun.

J. B. Yang, X. Y. Su, P. Xu, and Z. Gu, “Beam steering and deflecting device using step-based micro-blazed grating,” Opt. Commun. 281(15-16), 3969–3976 (2008).
[CrossRef]

Opt. Lett.

Opto-Electron. Rev.

N. Bennis, M. A. Geday, X. Quintana, B. Cerrolaza, D. P. Medialdea, A. Spadlo, R. Dabrowski, and J. M. Oton, “Nearly-analogue blazed phase grating using high birefringence liquid crystal,” Opto-Electron. Rev. 17(2), 112–115 (2009).
[CrossRef]

Other

D. Faklis, and G. M. Morris, “Diffractive optics technology for display applications,” in (SPIE, 1995), 57–61.

C. M. Titus, P. J. Bos, and O. D. Lavrentovich, “Efficient accurate liquid crystal digital light deflector,” in (SPIE, 1999), 244–253.

P. G. d. Gennes, and J. Prost, The physics of liquid crystals, 2nd ed., Oxford science publications (Clarendon Press;Oxford University Press, Oxford New York, 1993), pp. xvi, 597 p.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup, (b) CLC fingerprint grating structure observed under a cross-polarizing optical microscope.

Fig. 2
Fig. 2

(a) Variation in diffraction pattern when cell is irradiated with 34 mW/cm2 UV for 0 s,1 s, and 2 s; (b) variation of first-order diffraction angle with duration of UV irradiation.

Fig. 3
Fig. 3

Variation of first-order diffraction angle (a) with time in the dark at room temperature after UV irradiation is turned off, (b) with the duration of 93 mW/cm2 DPSS laser irradiation after the UV irradiation is turned off.

Fig. 4
Fig. 4

(a) First-order diffraction angle as a function of applied voltage, (b) variation of diffraction pattern of cell with combination of electrical or/and optical effects.

Fig. 5
Fig. 5

Tuning of CLC gratings by optical and electrical methods.

Metrics