Abstract

We investigate the improvement in efficiency of organic light emitting diodes/displays (OLEDs) by embedding a typical OLED structure within a metallic patch grating resonator. A patch grating resonator is similar to the more familiar Fabry-Perot resonator, except that one mirror of the resonator is a metallic patch grating with a pitch ~ λ/2 that reduces lateral propagation of radiative emission. FDTD simulations of the proposed structure indicate a potential 71% increase in emitted power over that of a reference OLED structure, and an additional 5% gain from adding an ITO spacer adjacent to the metallic electrode layer (for a total 76% increase). Implementation of this structure requires little to no modification of the OLED manufacturing process.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
    [CrossRef] [PubMed]
  2. P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 378–386 (2002).
    [CrossRef]
  3. Y. Sun, and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low index grids,” Nat. Photon. (London) 2, 483–487 (2008).
    [CrossRef]
  4. A. P. Feresidis, and J. C. Vardaxoglou, “High gain planar antenna using optimised partially reflective surfaces,” IEEE Proc. Microwaves Antennas Propag. 148, 345–350 (2001).
    [CrossRef]
  5. R. Sauleau, P. Coquet, T. Matsui, and J. P. Daniel, “A new concept of focusing antennas using plane-parallel Fabry-Perot cavities with nonuniform mirrors,” IEEE Trans. Antenn. Propag. 51, 3171–3175 (2003).
    [CrossRef]
  6. N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A metallic Fabry-Perot directive antenna,” IEEE Trans. Antenn. Propag. 54, 220–224 (2006).
    [CrossRef]
  7. E. R. Brown, and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300–1302 (1996).
    [CrossRef]
  8. M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-bandgap antennas,” IEEE Trans. Microw. Theory Tech. 47, 2115–2122 (1999).
    [CrossRef]
  9. R. Biswas, E. Ozbay, B. Temelkuran, M. Bayindir, M. M. Sigalas, and K. M. Ho, “Exceptionally directional sources with photonic-bandgap crystals,” J. Opt. Soc. Am. B 18, 1684–1689 (2001).
    [CrossRef]
  10. S. Enoch, G. Tayeb, P. Sabouroux, N. Guèrin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
    [CrossRef] [PubMed]
  11. H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).
    [CrossRef]
  12. L. Hou, Q. Hou, Y. Mo, J. Peng, and Y. Cao, “All-organic flexible polymer microcavity light-emitting diodes using 3M reflective multilayer polymer mirrors,” Appl. Phys. Lett. 87, 243504 (2005).
    [CrossRef]
  13. F. Jean, J.-Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, “Microcavity organic light-emitting diodes on silicon,” Appl. Phys. Lett. 81, 1717–1719 (2002).
    [CrossRef]
  14. H. Fischer, and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
    [CrossRef] [PubMed]
  15. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express 16, 16529–16537 (2008).
    [CrossRef] [PubMed]
  16. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76, 245403 (2007).
    [CrossRef]
  17. D. K. Gifford, and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
    [CrossRef]
  18. C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005).
    [CrossRef]
  19. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15, 10533–10539 (2007).
    [CrossRef] [PubMed]
  20. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
    [CrossRef]
  21. R. Gardelli, G. Donzelli, M. Albani, and F. Capolino, “Design of Patch Antennas and Thinned Array of Patches in a Fabry-Perot Cavity Covered by a Partially Reflective Surface,” in The European Conference on Antennas and Propagation: EuCAP 2006 vol. 626 of ESA Special Publication Oct. 2006.

2008 (3)

2007 (2)

2006 (1)

N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A metallic Fabry-Perot directive antenna,” IEEE Trans. Antenn. Propag. 54, 220–224 (2006).
[CrossRef]

2005 (2)

L. Hou, Q. Hou, Y. Mo, J. Peng, and Y. Cao, “All-organic flexible polymer microcavity light-emitting diodes using 3M reflective multilayer polymer mirrors,” Appl. Phys. Lett. 87, 243504 (2005).
[CrossRef]

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

2003 (1)

R. Sauleau, P. Coquet, T. Matsui, and J. P. Daniel, “A new concept of focusing antennas using plane-parallel Fabry-Perot cavities with nonuniform mirrors,” IEEE Trans. Antenn. Propag. 51, 3171–3175 (2003).
[CrossRef]

2002 (4)

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 378–386 (2002).
[CrossRef]

F. Jean, J.-Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, “Microcavity organic light-emitting diodes on silicon,” Appl. Phys. Lett. 81, 1717–1719 (2002).
[CrossRef]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guèrin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

D. K. Gifford, and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[CrossRef]

2001 (2)

A. P. Feresidis, and J. C. Vardaxoglou, “High gain planar antenna using optimised partially reflective surfaces,” IEEE Proc. Microwaves Antennas Propag. 148, 345–350 (2001).
[CrossRef]

R. Biswas, E. Ozbay, B. Temelkuran, M. Bayindir, M. M. Sigalas, and K. M. Ho, “Exceptionally directional sources with photonic-bandgap crystals,” J. Opt. Soc. Am. B 18, 1684–1689 (2001).
[CrossRef]

1999 (1)

M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-bandgap antennas,” IEEE Trans. Microw. Theory Tech. 47, 2115–2122 (1999).
[CrossRef]

1998 (2)

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

1997 (1)

1996 (1)

E. R. Brown, and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300–1302 (1996).
[CrossRef]

Barnard, E. S.

Barnes, W. L.

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15, 10533–10539 (2007).
[CrossRef] [PubMed]

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 378–386 (2002).
[CrossRef]

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

Bayindir, M.

Benisty, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

Biswas, R.

Brongersma, M. L.

Brown, E. R.

E. R. Brown, and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300–1302 (1996).
[CrossRef]

Burrows, P. E.

Cambon, P.

F. Jean, J.-Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, “Microcavity organic light-emitting diodes on silicon,” Appl. Phys. Lett. 81, 1717–1719 (2002).
[CrossRef]

Cao, Y.

L. Hou, Q. Hou, Y. Mo, J. Peng, and Y. Cao, “All-organic flexible polymer microcavity light-emitting diodes using 3M reflective multilayer polymer mirrors,” Appl. Phys. Lett. 87, 243504 (2005).
[CrossRef]

Cesario, J.

Chandran, A.

Cheylan, S.

Cheype, C.

M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-bandgap antennas,” IEEE Trans. Microw. Theory Tech. 47, 2115–2122 (1999).
[CrossRef]

Coquet, P.

R. Sauleau, P. Coquet, T. Matsui, and J. P. Daniel, “A new concept of focusing antennas using plane-parallel Fabry-Perot cavities with nonuniform mirrors,” IEEE Trans. Antenn. Propag. 51, 3171–3175 (2003).
[CrossRef]

Daniel, J. P.

R. Sauleau, P. Coquet, T. Matsui, and J. P. Daniel, “A new concept of focusing antennas using plane-parallel Fabry-Perot cavities with nonuniform mirrors,” IEEE Trans. Antenn. Propag. 51, 3171–3175 (2003).
[CrossRef]

De Neve, H.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

Denis, C.

F. Jean, J.-Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, “Microcavity organic light-emitting diodes on silicon,” Appl. Phys. Lett. 81, 1717–1719 (2002).
[CrossRef]

Engheta, N.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76, 245403 (2007).
[CrossRef]

Enoch, S.

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15, 10533–10539 (2007).
[CrossRef] [PubMed]

N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A metallic Fabry-Perot directive antenna,” IEEE Trans. Antenn. Propag. 54, 220–224 (2006).
[CrossRef]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guèrin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Feresidis, A. P.

A. P. Feresidis, and J. C. Vardaxoglou, “High gain planar antenna using optimised partially reflective surfaces,” IEEE Proc. Microwaves Antennas Propag. 148, 345–350 (2001).
[CrossRef]

Fischer, H.

Forrest, S. R.

Y. Sun, and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low index grids,” Nat. Photon. (London) 2, 483–487 (2008).
[CrossRef]

G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, “High-external-quantum efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
[CrossRef] [PubMed]

Garbuzov, D. Z.

Geffroy, B.

F. Jean, J.-Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, “Microcavity organic light-emitting diodes on silicon,” Appl. Phys. Lett. 81, 1717–1719 (2002).
[CrossRef]

Gifford, D. K.

D. K. Gifford, and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[CrossRef]

Gonzalez, M. U.

Gu, G.

Guerin, N.

N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A metallic Fabry-Perot directive antenna,” IEEE Trans. Antenn. Propag. 54, 220–224 (2006).
[CrossRef]

Guèrin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guèrin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Hall, D. G.

D. K. Gifford, and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[CrossRef]

Ho, K. M.

Hobson, P. A.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 378–386 (2002).
[CrossRef]

Hou, L.

L. Hou, Q. Hou, Y. Mo, J. Peng, and Y. Cao, “All-organic flexible polymer microcavity light-emitting diodes using 3M reflective multilayer polymer mirrors,” Appl. Phys. Lett. 87, 243504 (2005).
[CrossRef]

Hou, Q.

L. Hou, Q. Hou, Y. Mo, J. Peng, and Y. Cao, “All-organic flexible polymer microcavity light-emitting diodes using 3M reflective multilayer polymer mirrors,” Appl. Phys. Lett. 87, 243504 (2005).
[CrossRef]

Jean, F.

F. Jean, J.-Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, “Microcavity organic light-emitting diodes on silicon,” Appl. Phys. Lett. 81, 1717–1719 (2002).
[CrossRef]

Jecko, B.

M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-bandgap antennas,” IEEE Trans. Microw. Theory Tech. 47, 2115–2122 (1999).
[CrossRef]

Kamaev, V.

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

Legay, H.

N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A metallic Fabry-Perot directive antenna,” IEEE Trans. Antenn. Propag. 54, 220–224 (2006).
[CrossRef]

Li, J.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76, 245403 (2007).
[CrossRef]

Liu, C.

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

Martin, O. J. F.

Matsui, T.

R. Sauleau, P. Coquet, T. Matsui, and J. P. Daniel, “A new concept of focusing antennas using plane-parallel Fabry-Perot cavities with nonuniform mirrors,” IEEE Trans. Antenn. Propag. 51, 3171–3175 (2003).
[CrossRef]

McMahon, O. B.

E. R. Brown, and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300–1302 (1996).
[CrossRef]

Mo, Y.

L. Hou, Q. Hou, Y. Mo, J. Peng, and Y. Cao, “All-organic flexible polymer microcavity light-emitting diodes using 3M reflective multilayer polymer mirrors,” Appl. Phys. Lett. 87, 243504 (2005).
[CrossRef]

Mulot, J.-Y.

F. Jean, J.-Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, “Microcavity organic light-emitting diodes on silicon,” Appl. Phys. Lett. 81, 1717–1719 (2002).
[CrossRef]

Ozbay, E.

Peng, J.

L. Hou, Q. Hou, Y. Mo, J. Peng, and Y. Cao, “All-organic flexible polymer microcavity light-emitting diodes using 3M reflective multilayer polymer mirrors,” Appl. Phys. Lett. 87, 243504 (2005).
[CrossRef]

Quidant, R.

Reineix, A.

M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-bandgap antennas,” IEEE Trans. Microw. Theory Tech. 47, 2115–2122 (1999).
[CrossRef]

Sabouroux, P.

N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A metallic Fabry-Perot directive antenna,” IEEE Trans. Antenn. Propag. 54, 220–224 (2006).
[CrossRef]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guèrin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Sage, I.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 378–386 (2002).
[CrossRef]

Salandrino, A.

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76, 245403 (2007).
[CrossRef]

Sauleau, R.

R. Sauleau, P. Coquet, T. Matsui, and J. P. Daniel, “A new concept of focusing antennas using plane-parallel Fabry-Perot cavities with nonuniform mirrors,” IEEE Trans. Antenn. Propag. 51, 3171–3175 (2003).
[CrossRef]

Sigalas, M. M.

Sun, Y.

Y. Sun, and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low index grids,” Nat. Photon. (London) 2, 483–487 (2008).
[CrossRef]

Tayeb, G.

N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A metallic Fabry-Perot directive antenna,” IEEE Trans. Antenn. Propag. 54, 220–224 (2006).
[CrossRef]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guèrin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Temelkuran, B.

Thevenot, M.

M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-bandgap antennas,” IEEE Trans. Microw. Theory Tech. 47, 2115–2122 (1999).
[CrossRef]

Thompson, M. E.

Vardaxoglou, J. C.

A. P. Feresidis, and J. C. Vardaxoglou, “High gain planar antenna using optimised partially reflective surfaces,” IEEE Proc. Microwaves Antennas Propag. 148, 345–350 (2001).
[CrossRef]

Vardeny, Z. V.

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

Venkatesh, S.

Vincent, P.

N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A metallic Fabry-Perot directive antenna,” IEEE Trans. Antenn. Propag. 54, 220–224 (2006).
[CrossRef]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guèrin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Wasey, J. A. E.

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 378–386 (2002).
[CrossRef]

Weisbuch, C.

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

White, J. S.

Appl. Phys. Lett. (5)

E. R. Brown, and O. B. McMahon, “High zenithal directivity from a dipole antenna on a photonic crystal,” Appl. Phys. Lett. 68, 1300–1302 (1996).
[CrossRef]

L. Hou, Q. Hou, Y. Mo, J. Peng, and Y. Cao, “All-organic flexible polymer microcavity light-emitting diodes using 3M reflective multilayer polymer mirrors,” Appl. Phys. Lett. 87, 243504 (2005).
[CrossRef]

F. Jean, J.-Y. Mulot, B. Geffroy, C. Denis, and P. Cambon, “Microcavity organic light-emitting diodes on silicon,” Appl. Phys. Lett. 81, 1717–1719 (2002).
[CrossRef]

D. K. Gifford, and D. G. Hall, “Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling,” Appl. Phys. Lett. 81, 4315–4317 (2002).
[CrossRef]

C. Liu, V. Kamaev, and Z. V. Vardeny, “Efficiency enhancement of an organic light-emitting diode with a cathode forming two-dimensional periodic hole array,” Appl. Phys. Lett. 86, 143501 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-part I: basic concepts and analytical trends,” IEEE J. Quantum Electron. 34, 1612–1631 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 378–386 (2002).
[CrossRef]

IEEE Proc. Microwaves Antennas Propag. (1)

A. P. Feresidis, and J. C. Vardaxoglou, “High gain planar antenna using optimised partially reflective surfaces,” IEEE Proc. Microwaves Antennas Propag. 148, 345–350 (2001).
[CrossRef]

IEEE Trans. Antenn. Propag. (2)

R. Sauleau, P. Coquet, T. Matsui, and J. P. Daniel, “A new concept of focusing antennas using plane-parallel Fabry-Perot cavities with nonuniform mirrors,” IEEE Trans. Antenn. Propag. 51, 3171–3175 (2003).
[CrossRef]

N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, “A metallic Fabry-Perot directive antenna,” IEEE Trans. Antenn. Propag. 54, 220–224 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

M. Thevenot, C. Cheype, A. Reineix, and B. Jecko, “Directive photonic-bandgap antennas,” IEEE Trans. Microw. Theory Tech. 47, 2115–2122 (1999).
[CrossRef]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photon. (London) (1)

Y. Sun, and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low index grids,” Nat. Photon. (London) 2, 483–487 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76, 245403 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guèrin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Other (1)

R. Gardelli, G. Donzelli, M. Albani, and F. Capolino, “Design of Patch Antennas and Thinned Array of Patches in a Fabry-Perot Cavity Covered by a Partially Reflective Surface,” in The European Conference on Antennas and Propagation: EuCAP 2006 vol. 626 of ESA Special Publication Oct. 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Illustration of an electric dipole positioned a distance d 1 above a ground plane. The dipole image is also shown.

Fig. 2.
Fig. 2.

(left) Average emitted power from an x-oriented dipole versus separation distance d 1 from a ground plane (green), normalized to the power from a free space dipole (blue). Here, λ=500 nm and the ground plane is a 100 nm thick layer of aluminum. (right) Irradiance versus emission angle for separation distances d 1 corresponding to maxima in the response curves. Blue line is for a free-space dipole; green line is for d 1 = λ/4; and red line is for d 1 = 3λ/4.

Fig. 3.
Fig. 3.

Illustration of an electric dipole placed within a resonator with a patch grating reflector.

Fig. 4.
Fig. 4.

(left) Effect of patch grating on average emitted power from an x-oriented dipole versus distance from a ground plane, normalized to the power from a free space dipole where λ=500 nm. The patch width W = 180 nm, and the patch pitch Λ=250 nm. The dipole is vertically centered between a 100 nm thick aluminum ground plane and a patch grating so that d 1 = d 2. Green line is without the patch; red line is with the patch. (right) Effect of patch grating on the directionality of emission from an x-oriented dipole, normalized to the power from a free space dipole, where d 1 = d 2 = λ/4.

Fig. 5.
Fig. 5.

Illustration of a reference OLED structure (left) and the reference structure with a patch grating embedded into the upper ITO layer (right). An optional ITO spacer layer is indicated in the resonator structure.

Fig. 6.
Fig. 6.

(left) Average emitted power vs. patch layer distance normalized to the power from a reference OLED structure. Blue line is the reference OLED; green line is the OLED with patch grating (d 1 = 40 nm); and red line is OLED with patch grating and 20 nm ITO spacer (d 1 = 60 nm). (right) Irradiance versus emission angle normalized to the irradiance at the peak emission angle of the reference OLED. In both graphs, λ=500 nm, the patch length W=80 nm, and the patch pitch Λ = 125 nm.

Fig. 7.
Fig. 7.

Representative electric field distributions (E 2) for the patch-grating resonator (top) and reference (bottom) OLEDs. The ITO and glass regions are indicated by the dashed lines. The color scale is logarithmic.

Fig. 8.
Fig. 8.

Average relative emitted power of a dipole as a function of dipole position z, normalized to the maximum emitted power of the reference OLED with vertically centered dipole (z = 0, without a patch grating) where λ=500 nm, the patch length W = 80 nm, and pitch Λ= 125 nm. The patch grating position corresponds to optimal values obtained from Fig. 6. Blue line is the reference OLED; blue dashed line is the reference OLED with 20 nm ITO spacer; green line is the OLED with patch grating (d 1 + d 2=265 nm); and red line is OLED with patch grating and 20 nm ITO spacer (d 1 + d 2=270 nm).

Metrics