Abstract

In this work we investigate operation in the Geiger mode of the new single photon avalanche photo diode (SPAD) SAP500 manufactured by Laser Components. This SPAD is sensitive in the range 400-1000nm and has a conventional reach-through structure which ensures good quantum efficiency at the long end of the spectrum. By use of passive and active quenching schemes we investigate detection efficiency, timing jitter, dark counts, afterpulsing, gain and other important parameters and compare them to the “standard” low noise SPAD C30902SH from Perkin Elmer. We conclude that SAP500 offers better combination of detection efficiency, low noise and timing precision.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  2. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
  3. A. Poppe, A. Fedrizzi, R. Ursin, H. Bhm, T. Lrunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
    [CrossRef] [PubMed]
  4. . D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41.1–41.8 (2002).
    [CrossRef]
  5. T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675–1680 (2000).
    [CrossRef]
  6. M. Stipcevic, and B. Medved Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007).
    [CrossRef] [PubMed]
  7. H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993).
    [PubMed]
  8. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuit,” J. Mod. Opt. 51, 1267–1288 (2004).
  9. . EG&G Canada, “Silicon avalanche photodiodes C30902E, C30902S, C30921E, C30921S,” (data sheet), January 1, 1991.
  10. K. Schätzel, R. Kalström, B. Stampa, and J. Ahrens, “Correction of detection-system dead-time effects on photon correlation functions,” J. Opt. Soc. Am. B 5, 937–947 (1989).
    [CrossRef]
  11. M. Stipčević, “Active quenching circuit for single-photon detection with Geiger mode avalanche photodiodes,” Appl. Opt. 48, 1705–1714 (2009).
    [CrossRef] [PubMed]
  12. L. Li-Quiang, and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
    [CrossRef]
  13. A. C. Giudice, M. Ghioni, and S. Cova, “A process and deep level evaluation tool: afterpulsing in avalanche junctions,” European Solid-State Device Research, 2003. ESSDERC 03. 33rd Conference on 16–18 Sept. 2003 347–350.
  14. D. N. Klyshko, “Utilisation of a two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1117 (1980).
    [CrossRef]
  15. J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric down conversion,” Appl. Opt. 26, 4616–4619 (1987).
    [CrossRef] [PubMed]

2009 (1)

2007 (1)

M. Stipcevic, and B. Medved Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007).
[CrossRef] [PubMed]

2004 (2)

2002 (1)

. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

2000 (1)

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675–1680 (2000).
[CrossRef]

1999 (1)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

1993 (2)

1989 (1)

K. Schätzel, R. Kalström, B. Stampa, and J. Ahrens, “Correction of detection-system dead-time effects on photon correlation functions,” J. Opt. Soc. Am. B 5, 937–947 (1989).
[CrossRef]

1987 (1)

1980 (1)

D. N. Klyshko, “Utilisation of a two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1117 (1980).
[CrossRef]

Achleitner, U.

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675–1680 (2000).
[CrossRef]

Ahrens, J.

K. Schätzel, R. Kalström, B. Stampa, and J. Ahrens, “Correction of detection-system dead-time effects on photon correlation functions,” J. Opt. Soc. Am. B 5, 937–947 (1989).
[CrossRef]

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).

Bhm, H.

Cova, S.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuit,” J. Mod. Opt. 51, 1267–1288 (2004).

Dautet, H.

Davis, L. M.

L. Li-Quiang, and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[CrossRef]

Deschamps, P.

Dion, B.

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).

Fedrizzi, A.

Ghioni, M.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuit,” J. Mod. Opt. 51, 1267–1288 (2004).

Gisin, N.

. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Guinnard, O.

. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Jennewein, T.

Kalström, R.

K. Schätzel, R. Kalström, B. Stampa, and J. Ahrens, “Correction of detection-system dead-time effects on photon correlation functions,” J. Opt. Soc. Am. B 5, 937–947 (1989).
[CrossRef]

Klyshko, D. N.

D. N. Klyshko, “Utilisation of a two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1117 (1980).
[CrossRef]

Kurtsiefer, C.

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Li-Quiang, L.

L. Li-Quiang, and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[CrossRef]

Lotito, A.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuit,” J. Mod. Opt. 51, 1267–1288 (2004).

Lrunser, T.

MacGregor, A. D.

MacSween, D.

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Maurhardt, O.

McIntyre, R. J.

Medved Rogina, B.

M. Stipcevic, and B. Medved Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007).
[CrossRef] [PubMed]

Peev, M.

Poppe, A.

Rarity, J. G.

Rech, I.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuit,” J. Mod. Opt. 51, 1267–1288 (2004).

Ribordy, G.

. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Ridley, K. D.

Schätzel, K.

K. Schätzel, R. Kalström, B. Stampa, and J. Ahrens, “Correction of detection-system dead-time effects on photon correlation functions,” J. Opt. Soc. Am. B 5, 937–947 (1989).
[CrossRef]

Stampa, B.

K. Schätzel, R. Kalström, B. Stampa, and J. Ahrens, “Correction of detection-system dead-time effects on photon correlation functions,” J. Opt. Soc. Am. B 5, 937–947 (1989).
[CrossRef]

Stipcevic, M.

M. Stipčević, “Active quenching circuit for single-photon detection with Geiger mode avalanche photodiodes,” Appl. Opt. 48, 1705–1714 (2009).
[CrossRef] [PubMed]

M. Stipcevic, and B. Medved Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007).
[CrossRef] [PubMed]

Stucki, D.

. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Suda, M.

Tapster, P. R.

Trottier, C.

Ursin, R.

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).

Webb, P. P.

Weihs, G.

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675–1680 (2000).
[CrossRef]

Weinfurter, H.

A. Poppe, A. Fedrizzi, R. Ursin, H. Bhm, T. Lrunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[CrossRef] [PubMed]

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675–1680 (2000).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).

Zappa, F.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuit,” J. Mod. Opt. 51, 1267–1288 (2004).

Zbinden, H.

. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Zeilinger, A.

A. Poppe, A. Fedrizzi, R. Ursin, H. Bhm, T. Lrunser, O. Maurhardt, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, “Practical quantum key distribution with polarization entangled photons,” Opt. Express 12, 3865–3871 (2004).
[CrossRef] [PubMed]

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675–1680 (2000).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Appl. Opt. (3)

J. Mod. Opt. (1)

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuit,” J. Mod. Opt. 51, 1267–1288 (2004).

J. Opt. Soc. Am. B (1)

K. Schätzel, R. Kalström, B. Stampa, and J. Ahrens, “Correction of detection-system dead-time effects on photon correlation functions,” J. Opt. Soc. Am. B 5, 937–947 (1989).
[CrossRef]

N. J. Phys. (1)

. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with a plug&play system,” N. J. Phys. 4, 41.1–41.8 (2002).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (1)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization entangled photons,” Phys. Rev. A 60, R773–R776 (1999).

Phys. Rev. Lett. (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

L. Li-Quiang, and L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[CrossRef]

T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, “A fast and compact quantum random number generator,” Rev. Sci. Instrum. 71, 1675–1680 (2000).
[CrossRef]

M. Stipcevic, and B. Medved Rogina, “Quantum random number generator based on photonic emission in semiconductors,” Rev. Sci. Instrum. 78, 045104 (2007).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

D. N. Klyshko, “Utilisation of a two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1117 (1980).
[CrossRef]

Other (2)

A. C. Giudice, M. Ghioni, and S. Cova, “A process and deep level evaluation tool: afterpulsing in avalanche junctions,” European Solid-State Device Research, 2003. ESSDERC 03. 33rd Conference on 16–18 Sept. 2003 347–350.

. EG&G Canada, “Silicon avalanche photodiodes C30902E, C30902S, C30921E, C30921S,” (data sheet), January 1, 1991.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

(a) the passive quenching circuit; (b) the same followed by the constant level discriminator and the pulse shaper.

Fig. 2.
Fig. 2.

A single photon response at the output of the passive quenching circuit, for SAP500 and C30902SH. Because of pulse to pulse variations, a statistical average of 256 output waveforms are shown.

Fig. 3.
Fig. 3.

Multiplication gain (in millions) as a function of overvoltage for single photons of 676nm at room temperature.

Fig. 4.
Fig. 4.

Dark counts rate as function of overvoltage measured at two temperatures.

Fig. 5.
Fig. 5.

Setup for measurement of afterpulsing probability.

Fig. 6.
Fig. 6.

Afterpulsing probability as a function of overvoltage for the two SPADs, at various temperatures, measured by active quenching.

Fig. 7.
Fig. 7.

Inefficient active quenching condition: a cascade of quenching attempts.

Fig. 8.
Fig. 8.

Setup for measuring timing jitter of a SPAD based photon detector by means of a picosecond laser and time-to-amplitude converter (TAC).

Fig. 9.
Fig. 9.

Near Gaussian jitter distribution for SAP500 at −23.2°C and overvoltage of 30V. The right side tail, characteristic of reach-through structure, is barely visible.

Fig. 10.
Fig. 10.

Timing resolution (jitter) FWHM as a function of overvoltage for the two SPADs, measured with the passive quenching circuit and a constant fraction detector. At overvoltage of 30V jitter goes down to 420ps for C30902SH and 210ps for SAP500.

Fig. 11.
Fig. 11.

Setup for measuring absolute detection efficiency at 810nm by use of the type-II parametric downconversion in BBO crystal.

Fig. 12.
Fig. 12.

Setup for measuring relative absolute detection efficiencies at various wavelengths by use of a monochromator.

Fig. 13.
Fig. 13.

Spectral photon detection efficiency curves obtained at −23.2°C: for C30902SH (Vover =6V, tQ =30ns) and for SAP500 (Vover =6V,10V, tQ =9ns).

Fig. 14.
Fig. 14.

Setup for measuring photon detection efficiency as a function of the overvoltage by use of the pulsed laser and the coincidence technique.

Fig. 15.
Fig. 15.

Photon detection efficiencies as a function of the overvoltage at 676nm. SPADs were kept at −23.2°C.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

G = 1 R L e 0 V ( t ) dt .
F 1 = T 1 ε 1 + N 1
F 2 = T 2 ε 2 + N 2
C = T 1 ε 1 ε 2 + N 1 F 2 τ c
ε 2 = k ε 2 = k C F 1 N 1 .
ε ( λ ) = f det ( λ ) f inc ( λ ) = f det ( λ ) P inc ( λ ) ( hc λ ) = k f det ( λ ) λ P emit ( λ ) .
k = ε ( 810 nm ) × 810 nm × P emit ( 810 nm ) f det ( 810 nm ) .

Metrics