Abstract

This paper reports on the optimization and assessment of a hyperspectral imaging-based spatially-resolved system for determination of the optical properties of biological materials over the wavelengths of 500-1,000 nm. Twelve model samples covering a wide range of absorption and reduced scattering coefficients were created to validate the hyperspectral imaging system, and their true values of absorption and reduced scattering coefficients were determined and then cross-validated using three commonly used methods (i.e., transmittance, integrating sphere, and empirical equation). Light beam and source-detector distance were optimized through Monte Carlo simulations and experiments for the model samples. The optimal light beam should be of Gaussian type with the diameter of less than 1 mm, and the optimal minimum and maximum source-detector distance should be 1.5 mm and 10-20 mean free paths, respectively. The optimized hyperspectral imaging-based spatially-resolved system achieved good estimation of the optical parameters.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
    [CrossRef] [PubMed]
  2. J. Welzel, C. Reinhardt, E. Lankenau, C. Winter, and H. H. Wolff, “Changes in function and morphology of normal human skin: evaluation using optical coherence tomography,” Br. J. Dermatol. 150(2), 220–225 (2004).
    [CrossRef] [PubMed]
  3. B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
    [CrossRef] [PubMed]
  4. A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 49(5), 685–699 (2004).
    [CrossRef] [PubMed]
  5. A. V. Bykov, M. Y. Kirillin, A. V. Priezzhev, and R. Myllyla, “Simulations of a spatially resolved reflectometry signal from a highly scattering three-layer medium applied to the problem of glucose sensing in human skin,” Quantum Electron. 36(12), 1125–1130 (2006).
    [CrossRef]
  6. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650-1000 nm,” Appl. Opt. 40(4), 538–543 (2001).
    [CrossRef] [PubMed]
  7. J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
    [CrossRef]
  8. W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolaï, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt. 47(7), 908–919 (2008).
    [CrossRef] [PubMed]
  9. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE PRESS, Bellingham, Washington, USA, 2000).
  10. T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
    [CrossRef] [PubMed]
  11. B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14(2), 024041 (2009).
    [CrossRef] [PubMed]
  12. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
    [CrossRef] [PubMed]
  13. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
    [CrossRef] [PubMed]
  14. M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
    [CrossRef] [PubMed]
  15. H. Cen and R. Lu, “Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique,” Appl. Opt. 48(29), 5612–5623 (2009).
    [CrossRef] [PubMed]
  16. J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61(4), 388–396 (2007).
    [CrossRef] [PubMed]
  17. S. A. Prahl, M. J. C. Vangemert, and A. J. Welch, “Determining the optical-properties of turbid media by using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
    [CrossRef] [PubMed]
  18. H. J. van Staveren, C. J. M. Moes, J. Vanmarle, S. A. Prahl, and M. J. C. Vangemert, “Light-scattering in intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  19. H. Cen, R. Lu, and K. Dolan, “Optimization of inverse algorithm for estimating the optical properties of biological materials using spatially-resolved diffuse reflectance,” Inverse Probl. Sci. En., First published on: 29 June 2010 (iFirst).
  20. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1: Single Scattering and Transport Theory (Academic Press, New York, NY, 1978).
  21. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [CrossRef] [PubMed]
  22. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14(1), 246–254 (1997).
    [CrossRef] [PubMed]
  23. B. H. Yuan, N. G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt. 9(3), 497–503 (2004).
    [CrossRef] [PubMed]
  24. R. Lu and Y. R. Chen, “Hyperspectral imaging system for safety inspection of food and agricultural products,” Proc. SPIE 3544, 121–133 (1999).
    [CrossRef]
  25. T. Z. Ren, Z. Y. Yuan, and B. L. Su, “Encapsulation of direct blue dye into mesoporous silica-based materials,” Colloid. Surface A. 300(1-2), 79–87 (2007).
    [CrossRef]
  26. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
    [CrossRef] [PubMed]
  27. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte Carlo modeling of light transport in multilayered tissues,” Comput. Methods Prog. Bio. 47(2), 131–146 (1995).
    [CrossRef]
  28. G. M. Hale and M. R. Querry, “Optical constants of water in 200 nm to 200 µm wavelegnth region,” Appl. Opt. 12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  29. A. Giusto, R. Saija, M. A. Iatì, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt. 42(21), 4375–4380 (2003).
    [CrossRef] [PubMed]
  30. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42(19), 4023–4030 (2003).
    [CrossRef] [PubMed]
  31. M. G. Nichols, E. L. Hull, and T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36(1), 93–104 (1997).
    [CrossRef] [PubMed]
  32. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
    [CrossRef] [PubMed]
  33. T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt. 39(34), 6487–6497 (2000).
    [CrossRef] [PubMed]
  34. C. Chen, J. Q. Lu, H. F. Ding, K. M. Jacobs, Y. Du, and X. H. Hu, “A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630 nm,” Opt. Express 14(16), 7420–7435 (2006).
    [CrossRef] [PubMed]
  35. S. Prahl, “Optical absorption of water” (1998). http://omlc.ogi.edu/spectra/water/index.html .
  36. F. Martelli and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express 15(2), 486–500 (2007).
    [CrossRef] [PubMed]
  37. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36(4), 949–957 (1997).
    [CrossRef] [PubMed]
  38. R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, and H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35(10), 1756–1766 (1996).
    [CrossRef] [PubMed]
  39. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
    [CrossRef] [PubMed]
  40. S. Spichtig, R. Hornung, D. W. Brown, D. Haensse, and M. Wolf, “Multifrequency frequency-domain spectrometer for tissue analysis,” Rev. Sci. Instrum. 80(2), 024301 (2009).
    [CrossRef] [PubMed]

2009

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14(2), 024041 (2009).
[CrossRef] [PubMed]

S. Spichtig, R. Hornung, D. W. Brown, D. Haensse, and M. Wolf, “Multifrequency frequency-domain spectrometer for tissue analysis,” Rev. Sci. Instrum. 80(2), 024301 (2009).
[CrossRef] [PubMed]

H. Cen and R. Lu, “Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique,” Appl. Opt. 48(29), 5612–5623 (2009).
[CrossRef] [PubMed]

2008

W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolaï, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt. 47(7), 908–919 (2008).
[CrossRef] [PubMed]

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[CrossRef] [PubMed]

J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
[CrossRef]

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[CrossRef] [PubMed]

2007

2006

C. Chen, J. Q. Lu, H. F. Ding, K. M. Jacobs, Y. Du, and X. H. Hu, “A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630 nm,” Opt. Express 14(16), 7420–7435 (2006).
[CrossRef] [PubMed]

A. V. Bykov, M. Y. Kirillin, A. V. Priezzhev, and R. Myllyla, “Simulations of a spatially resolved reflectometry signal from a highly scattering three-layer medium applied to the problem of glucose sensing in human skin,” Quantum Electron. 36(12), 1125–1130 (2006).
[CrossRef]

2005

2004

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 49(5), 685–699 (2004).
[CrossRef] [PubMed]

J. Welzel, C. Reinhardt, E. Lankenau, C. Winter, and H. H. Wolff, “Changes in function and morphology of normal human skin: evaluation using optical coherence tomography,” Br. J. Dermatol. 150(2), 220–225 (2004).
[CrossRef] [PubMed]

B. H. Yuan, N. G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt. 9(3), 497–503 (2004).
[CrossRef] [PubMed]

2003

2001

2000

1999

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

R. Lu and Y. R. Chen, “Hyperspectral imaging system for safety inspection of food and agricultural products,” Proc. SPIE 3544, 121–133 (1999).
[CrossRef]

1997

1996

1995

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte Carlo modeling of light transport in multilayered tissues,” Comput. Methods Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

1994

1993

1992

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

1991

1973

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

Andersson-Engels, S.

Aruna, P.

Avrillier, S.

Bassi, A.

Bays, R.

Bevilacqua, F.

Bigio, I. J.

Biscotti, G.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 49(5), 685–699 (2004).
[CrossRef] [PubMed]

Borghese, F.

Boyer, J.

Braichotte, D.

Brown, D. W.

S. Spichtig, R. Hornung, D. W. Brown, D. Haensse, and M. Wolf, “Multifrequency frequency-domain spectrometer for tissue analysis,” Rev. Sci. Instrum. 80(2), 024301 (2009).
[CrossRef] [PubMed]

Butler, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Bykov, A. V.

A. V. Bykov, M. Y. Kirillin, A. V. Priezzhev, and R. Myllyla, “Simulations of a spatially resolved reflectometry signal from a highly scattering three-layer medium applied to the problem of glucose sensing in human skin,” Quantum Electron. 36(12), 1125–1130 (2006).
[CrossRef]

Cen, H.

Cerussi, A.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Chen, C.

Chen, N. G.

B. H. Yuan, N. G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt. 9(3), 497–503 (2004).
[CrossRef] [PubMed]

Chen, Y. R.

R. Lu and Y. R. Chen, “Hyperspectral imaging system for safety inspection of food and agricultural products,” Proc. SPIE 3544, 121–133 (1999).
[CrossRef]

Cletus, B.

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14(2), 024041 (2009).
[CrossRef] [PubMed]

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

Cubeddu, R.

D’Andrea, C.

Dalgaard, T.

Dam, J. S.

Del Bianco, S.

Denti, P.

Ding, H. F.

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

Dover, C.

Du, Y.

Eker, C.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Espinoza, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Fabricius, P. E.

Farrell, T. J.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Feng, T. C.

Ferrari, M.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 49(5), 685–699 (2004).
[CrossRef] [PubMed]

Fishkin, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Foster, T. H.

Fuselier, T.

Giusto, A.

Grosenick, D.

Haensse, D.

S. Spichtig, R. Hornung, D. W. Brown, D. Haensse, and M. Wolf, “Multifrequency frequency-domain spectrometer for tissue analysis,” Rev. Sci. Instrum. 80(2), 024301 (2009).
[CrossRef] [PubMed]

Hale, G. M.

Haskell, R. C.

Honold, S.

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[CrossRef] [PubMed]

Hornung, R.

S. Spichtig, R. Hornung, D. W. Brown, D. Haensse, and M. Wolf, “Multifrequency frequency-domain spectrometer for tissue analysis,” Rev. Sci. Instrum. 80(2), 024301 (2009).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Hu, X. H.

Hull, E. L.

Iatì, M. A.

Ingvar, C.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

Jacobs, K. M.

Jacques, S. L.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[CrossRef] [PubMed]

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte Carlo modeling of light transport in multilayered tissues,” Comput. Methods Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

Johnson, D.

Johnson, T. M.

Jordan, R.

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14(2), 024041 (2009).
[CrossRef] [PubMed]

Kienle, A.

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[CrossRef] [PubMed]

A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14(1), 246–254 (1997).
[CrossRef] [PubMed]

Kirillin, M. Y.

A. V. Bykov, M. Y. Kirillin, A. V. Priezzhev, and R. Myllyla, “Simulations of a spatially resolved reflectometry signal from a highly scattering three-layer medium applied to the problem of glucose sensing in human skin,” Quantum Electron. 36(12), 1125–1130 (2006).
[CrossRef]

Künnemeyer, R.

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14(2), 024041 (2009).
[CrossRef] [PubMed]

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

Lankenau, E.

J. Welzel, C. Reinhardt, E. Lankenau, C. Winter, and H. H. Wolff, “Changes in function and morphology of normal human skin: evaluation using optical coherence tomography,” Br. J. Dermatol. 150(2), 220–225 (2004).
[CrossRef] [PubMed]

Lindblom, P.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

Lu, J. Q.

Lu, R.

H. Cen and R. Lu, “Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique,” Appl. Opt. 48(29), 5612–5623 (2009).
[CrossRef] [PubMed]

J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
[CrossRef]

J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61(4), 388–396 (2007).
[CrossRef] [PubMed]

R. Lu and Y. R. Chen, “Hyperspectral imaging system for safety inspection of food and agricultural products,” Proc. SPIE 3544, 121–133 (1999).
[CrossRef]

Macdonald, R.

Martelli, F.

Martinsen, P.

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14(2), 024041 (2009).
[CrossRef] [PubMed]

McAdams, M. S.

McGlone, A.

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14(2), 024041 (2009).
[CrossRef] [PubMed]

Moes, C. J. M.

Möller, M.

Monnier, P.

Mourant, J. R.

Myllyla, R.

A. V. Bykov, M. Y. Kirillin, A. V. Priezzhev, and R. Myllyla, “Simulations of a spatially resolved reflectometry signal from a highly scattering three-layer medium applied to the problem of glucose sensing in human skin,” Quantum Electron. 36(12), 1125–1130 (2006).
[CrossRef]

Nghiem, H. L.

Nichols, M. G.

Nicolaï, B. M.

Patterson, M. S.

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[CrossRef] [PubMed]

A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14(1), 246–254 (1997).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Pedersen, C. B.

Pham, T. H.

Pifferi, A.

Pilz, M.

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[CrossRef] [PubMed]

Prahl, S. A.

Priezzhev, A. V.

A. V. Bykov, M. Y. Kirillin, A. V. Priezzhev, and R. Myllyla, “Simulations of a spatially resolved reflectometry signal from a highly scattering three-layer medium applied to the problem of glucose sensing in human skin,” Quantum Electron. 36(12), 1125–1130 (2006).
[CrossRef]

Qin, J.

J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
[CrossRef]

J. Qin and R. Lu, “Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging,” Appl. Spectrosc. 61(4), 388–396 (2007).
[CrossRef] [PubMed]

Quaresima, V.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 49(5), 685–699 (2004).
[CrossRef] [PubMed]

Querry, M. R.

Ramon, H.

Reinhardt, C.

J. Welzel, C. Reinhardt, E. Lankenau, C. Winter, and H. H. Wolff, “Changes in function and morphology of normal human skin: evaluation using optical coherence tomography,” Br. J. Dermatol. 150(2), 220–225 (2004).
[CrossRef] [PubMed]

Ren, T. Z.

T. Z. Ren, Z. Y. Yuan, and B. L. Su, “Encapsulation of direct blue dye into mesoporous silica-based materials,” Colloid. Surface A. 300(1-2), 79–87 (2007).
[CrossRef]

Robert, D.

Ruiz-Altisent, M.

Saeys, W.

Saija, R.

Savary, J. F.

Shah, N.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Sindoni, O. I.

Spichtig, S.

S. Spichtig, R. Hornung, D. W. Brown, D. Haensse, and M. Wolf, “Multifrequency frequency-domain spectrometer for tissue analysis,” Rev. Sci. Instrum. 80(2), 024301 (2009).
[CrossRef] [PubMed]

Spinelli, L.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 49(5), 685–699 (2004).
[CrossRef] [PubMed]

Spott, T.

Stamm, H.

Sterenborg, H. J.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

Su, B. L.

T. Z. Ren, Z. Y. Yuan, and B. L. Su, “Encapsulation of direct blue dye into mesoporous silica-based materials,” Colloid. Surface A. 300(1-2), 79–87 (2007).
[CrossRef]

Svaasand, L. O.

Svensson, T.

Swartling, J.

Taroni, P.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 49(5), 685–699 (2004).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650-1000 nm,” Appl. Opt. 40(4), 538–543 (2001).
[CrossRef] [PubMed]

Thennadil, S. N.

Torricelli, A.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 49(5), 685–699 (2004).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650-1000 nm,” Appl. Opt. 40(4), 538–543 (2001).
[CrossRef] [PubMed]

Tromberg, B.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Tromberg, B. J.

Tsay, T. T.

Tualle, J. M.

Valentini, G.

Valero, C.

van den Bergh, H.

van Staveren, H. J.

van Veen, R. L. P.

Vangemert, M. J. C.

Vanmarle, J.

Velazco-Roa, M. A.

Wabnitz, H.

Wagnieres, G.

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[CrossRef] [PubMed]

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte Carlo modeling of light transport in multilayered tissues,” Comput. Methods Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

Welch, A. J.

Welzel, J.

J. Welzel, C. Reinhardt, E. Lankenau, C. Winter, and H. H. Wolff, “Changes in function and morphology of normal human skin: evaluation using optical coherence tomography,” Br. J. Dermatol. 150(2), 220–225 (2004).
[CrossRef] [PubMed]

Whelan, M.

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[CrossRef] [PubMed]

Winter, C.

J. Welzel, C. Reinhardt, E. Lankenau, C. Winter, and H. H. Wolff, “Changes in function and morphology of normal human skin: evaluation using optical coherence tomography,” Br. J. Dermatol. 150(2), 220–225 (2004).
[CrossRef] [PubMed]

Wolf, M.

S. Spichtig, R. Hornung, D. W. Brown, D. Haensse, and M. Wolf, “Multifrequency frequency-domain spectrometer for tissue analysis,” Rev. Sci. Instrum. 80(2), 024301 (2009).
[CrossRef] [PubMed]

Wolff, H. H.

J. Welzel, C. Reinhardt, E. Lankenau, C. Winter, and H. H. Wolff, “Changes in function and morphology of normal human skin: evaluation using optical coherence tomography,” Br. J. Dermatol. 150(2), 220–225 (2004).
[CrossRef] [PubMed]

Yuan, B. H.

B. H. Yuan, N. G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt. 9(3), 497–503 (2004).
[CrossRef] [PubMed]

Yuan, Z. Y.

T. Z. Ren, Z. Y. Yuan, and B. L. Su, “Encapsulation of direct blue dye into mesoporous silica-based materials,” Colloid. Surface A. 300(1-2), 79–87 (2007).
[CrossRef]

Zaccanti, G.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[CrossRef] [PubMed]

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte Carlo modeling of light transport in multilayered tissues,” Comput. Methods Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

Zhu, Q.

B. H. Yuan, N. G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt. 9(3), 497–503 (2004).
[CrossRef] [PubMed]

Appl. Opt.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, C. Dover, D. Johnson, M. Ruiz-Altisent, and C. Valero, “Nondestructive quantification of chemical and physical properties of fruits by time-resolved reflectance spectroscopy in the wavelength range 650-1000 nm,” Appl. Opt. 40(4), 538–543 (2001).
[CrossRef] [PubMed]

W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolaï, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt. 47(7), 908–919 (2008).
[CrossRef] [PubMed]

J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt. 40(7), 1155–1164 (2001).
[CrossRef] [PubMed]

H. Cen and R. Lu, “Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique,” Appl. Opt. 48(29), 5612–5623 (2009).
[CrossRef] [PubMed]

S. A. Prahl, M. J. C. Vangemert, and A. J. Welch, “Determining the optical-properties of turbid media by using the adding-doubling method,” Appl. Opt. 32(4), 559–568 (1993).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. Vanmarle, S. A. Prahl, and M. J. C. Vangemert, “Light-scattering in intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
[CrossRef] [PubMed]

G. M. Hale and M. R. Querry, “Optical constants of water in 200 nm to 200 µm wavelegnth region,” Appl. Opt. 12(3), 555–563 (1973).
[CrossRef] [PubMed]

A. Giusto, R. Saija, M. A. Iatì, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt. 42(21), 4375–4380 (2003).
[CrossRef] [PubMed]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42(19), 4023–4030 (2003).
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, and T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36(1), 93–104 (1997).
[CrossRef] [PubMed]

T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt. 39(34), 6487–6497 (2000).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36(4), 949–957 (1997).
[CrossRef] [PubMed]

R. Bays, G. Wagnieres, D. Robert, D. Braichotte, J. F. Savary, P. Monnier, and H. van den Bergh, “Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry,” Appl. Opt. 35(10), 1756–1766 (1996).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

Appl. Spectrosc.

Br. J. Dermatol.

J. Welzel, C. Reinhardt, E. Lankenau, C. Winter, and H. H. Wolff, “Changes in function and morphology of normal human skin: evaluation using optical coherence tomography,” Br. J. Dermatol. 150(2), 220–225 (2004).
[CrossRef] [PubMed]

Colloid. Surface A.

T. Z. Ren, Z. Y. Yuan, and B. L. Su, “Encapsulation of direct blue dye into mesoporous silica-based materials,” Colloid. Surface A. 300(1-2), 79–87 (2007).
[CrossRef]

Comput. Methods Prog. Bio.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML - Monte Carlo modeling of light transport in multilayered tissues,” Comput. Methods Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

Comput. Methods Programs Biomed.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[CrossRef] [PubMed]

J. Biomed. Opt.

B. H. Yuan, N. G. Chen, and Q. Zhu, “Emission and absorption properties of indocyanine green in Intralipid solution,” J. Biomed. Opt. 9(3), 497–503 (2004).
[CrossRef] [PubMed]

B. Cletus, R. Künnemeyer, P. Martinsen, A. McGlone, and R. Jordan, “Characterizing liquid turbid media by frequency-domain photon-migration spectroscopy,” J. Biomed. Opt. 14(2), 024041 (2009).
[CrossRef] [PubMed]

M. Pilz, S. Honold, and A. Kienle, “Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system,” J. Biomed. Opt. 13(5), 054047 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Med. Phys.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19(4), 879–888 (1992).
[CrossRef] [PubMed]

Opt. Express

Phys. Med. Biol.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44(4), 967–981 (1999).
[CrossRef] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[CrossRef] [PubMed]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 49(5), 685–699 (2004).
[CrossRef] [PubMed]

Postharvest Biol. Technol.

J. Qin and R. Lu, “Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique,” Postharvest Biol. Technol. 49(3), 355–365 (2008).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Proc. SPIE

R. Lu and Y. R. Chen, “Hyperspectral imaging system for safety inspection of food and agricultural products,” Proc. SPIE 3544, 121–133 (1999).
[CrossRef]

Quantum Electron.

A. V. Bykov, M. Y. Kirillin, A. V. Priezzhev, and R. Myllyla, “Simulations of a spatially resolved reflectometry signal from a highly scattering three-layer medium applied to the problem of glucose sensing in human skin,” Quantum Electron. 36(12), 1125–1130 (2006).
[CrossRef]

Rev. Sci. Instrum.

S. Spichtig, R. Hornung, D. W. Brown, D. Haensse, and M. Wolf, “Multifrequency frequency-domain spectrometer for tissue analysis,” Rev. Sci. Instrum. 80(2), 024301 (2009).
[CrossRef] [PubMed]

Other

V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE PRESS, Bellingham, Washington, USA, 2000).

H. Cen, R. Lu, and K. Dolan, “Optimization of inverse algorithm for estimating the optical properties of biological materials using spatially-resolved diffuse reflectance,” Inverse Probl. Sci. En., First published on: 29 June 2010 (iFirst).

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. 1: Single Scattering and Transport Theory (Academic Press, New York, NY, 1978).

S. Prahl, “Optical absorption of water” (1998). http://omlc.ogi.edu/spectra/water/index.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Hyperspectral imaging-based spatially-resolved method: (a) measurement principle; (b) schematic showing the major components of the system; (c) top view of multiple line scanning mode for acquiring spatially-resolved reflectance profiles.

Fig. 2
Fig. 2

Hyperspectral reflectance image of a liquid model sample: (a) 2-D display with intensities being indicated by pseudo colors, and (b) original spatially-resolved reflectance profiles at 570 nm and 700 nm.

Fig. 3
Fig. 3

Collimated transmittance measurement for absorption using a miniature fiber optic spectrometer.

Fig. 4
Fig. 4

Single integrating sphere configurations for: (a) total diffuse reflectance measurement, and (b) total transmittance measurement.

Fig. 5
Fig. 5

Spectra of the absorption coefficient for the three standard solutions measured by the transmittance method [asterisks (*) for standard 0.1, triangles (▸) for standard 0.5, and squares (▪) for standard 0.8] and their true vlaues (solid lines).

Fig. 6
Fig. 6

Average differences of the reduced scattering coefficient for the model samples at different concentrations of Intralipid for 500-900 nm obtained from the integrating sphere measurement and the empirical equation.

Fig. 7
Fig. 7

Comparison of spatially-resolved reflectance produced by infinitely small beam, flat beam with diameter of d = 1 mm , and Gaussian beam with d = 1 and 2 mm .

Fig. 8
Fig. 8

Error analysis for different beam sizes: (a) average errors of estimating six sets of optical properties with 0.060 μ a 2.000 cm -1 and 4.0 μ s ' 40.0 cm -1 , and the ratios of μ s ' / μ a = 20 and μ s ' / μ a = 70 ; and (b) and (c) relative errors for three sets of optical properties with increased μ a and μ s ' from A to C with μ a = 0.006 , 0.029 , 0.057 cm -1 , and μ s ' = 0.4 , 2.0 , 4.0 cm -1 .

Fig. 9
Fig. 9

3D profiles (a and b) and 2D (c and d) contours of the incident light beam at wavelengths of 650 nm and 950 nm, where D1 is the direction along the scan line and D2 is perpendicular to the scan line.

Fig. 10
Fig. 10

Relative errors of estimating μ a (squares) and μ s ' (asterisks) from the spatially-resolved reflectance data generated by Monte Carlo simulations when using different minimum and maximum source-detector distances: (a1) and (b1) μ a = 0.290       cm -1 & μ s ' = 20.0       cm -1 , and (a2) and (b2) μ a = 0.430       cm -1 & μ s ' = 30.0       cm -1 .

Fig. 11
Fig. 11

Signal-to-noise ratio measurement of the hyperspectral imaging system: (a) average spatially-resolved reflectance profile of 10 measurements of a model sample at 650 nm, and (b) signal-to-noise ratio of the measurements within 10 mm source-detector distance.

Fig. 12
Fig. 12

Errors of estimating μ a = 1.00 cm -1 and μ s ' = 20.0 cm -1 introduced by different spatial resolutions relative to the optical properties obtained for the resolution of 0.01 mm.

Fig. 13
Fig. 13

Spectra of absorption and reduced scattering coefficients of three model samples with (a) blue dye, (b) green dye, and (c) mixed dye as absorbers measured by the hyperspectral imaging and reference methods.

Fig. 14
Fig. 14

Confocal laser scanning microscopy images of Intralipid solutions with (a) blue dye, and (b) green dye.

Fig. 15
Fig. 15

Coefficient of variation versus reordered ascending absorption coefficients of a model sample at different wavelengths.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R ( r ) = C 1 4 π D [ exp ( μ e f f r 1 ) r 1 exp ( μ e f f r 2 ) r 2 ] + C 2 4 π [ 1 μ t ' ( μ e f f + 1 r 1 ) exp ( μ e f f r 1 ) r 1 2 + ( 1 μ t ' + 2 z b ) ( μ e f f + 1 r 2 ) exp ( μ e f f r 2 ) r 2 2 ]
μ a = ln I s I d I r I d
μ s ' = ( 928 λ 1.4 160 λ 2.4 ) C %
R d = 4 π A / P 2
ε = α m e a s α t r u e α t r u e × 100 %

Metrics