Abstract

Dielectrophoretic forces originating from highly modulated electric fields can be used to trap particles on surfaces. An all-optical way to induce such fields is the use of a photorefractive material, where the fields that modulate the refractive index are present at the surface. We present a method for two-dimensional particle alignment on an optically structured photorefractive lithium niobate crystal. The structuring is done using an amplitude-modulating spatial light modulator and laser illumination. We demonstrate trapping of uncharged graphite particles in periodic and arbitrary patterns and provide a discussion of the limitations and the necessary boundary conditions for maximum trapping efficiency. The photorefractive crystal is utilized as bottom part of a PDMS channel in order to demonstrate two-dimensional dielectrophoretic trapping in a microfluidic system.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [CrossRef] [PubMed]
  2. C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, “Disposable Smart lab on a chip for point-of-care clinical diagnostics,” Proc. IEEE 92(1), 154–173 (2004).
    [CrossRef]
  3. S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
    [CrossRef] [PubMed]
  4. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  5. D. M. Pai and B. E. Springett, “Physics of Electrophotography,” Rev. Mod. Phys. 65(1), 163–211 (1993).
    [CrossRef]
  6. N. Ranjan, M. Mertig, G. Cuniberti, and W. Pompe, “Dielectrophoretic growth of metallic nanowires and microwires: theory and experiments,” Langmuir 26(1), 552–559 (2010).
    [CrossRef]
  7. H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, and T. C. Tan, “Large-area travelling wave dielectrophoresis particle separator,” J. Micromech. Microeng. 7(2), 65–70 (1997).
    [CrossRef]
  8. H. Morgan, M. P. Hughes, and N. G. Green, “Separation of submicron bioparticles by dielectrophoresis,” Biophys. J. 77(1), 516–525 (1999).
    [CrossRef] [PubMed]
  9. P. R. C. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
    [CrossRef] [PubMed]
  10. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [CrossRef]
  11. A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
    [CrossRef]
  12. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [CrossRef] [PubMed]
  13. V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, “Electrically controlled volume LiNbO3 holograms for wavelength demultiplexing systems,” Opt. Mater. 18(1), 191–194 (2001).
    [CrossRef]
  14. V. V. Krishnamachari, O. Grothe, H. Deitmar, and C. Denz, “Novelty filtering with a photorefractive lithium-niobate crystal,” Appl. Phys. Lett. 87(7), 071105 (2005).
    [CrossRef]
  15. M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
    [CrossRef]
  16. P. Yeh, Introduction to Photorefractive Nonlinear Optics, (Wiley Interscience, 1993).
  17. H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
    [CrossRef]
  18. K. H. Bhatt and O. D. Velev, “Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires,” Langmuir 20(2), 467–476 (2004).
    [CrossRef]
  19. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
    [CrossRef] [PubMed]
  20. H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29(8), 1182–1188 (1958).
    [CrossRef]
  21. T. B. Jones, Electrokinetics of Particles, (Cambridge University Press, 1995).
  22. S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
    [CrossRef]
  23. P. Rose, B. Terhalle, J. Imbrock, and C. Denz, “Optically induced photonic superlattices by holographic multiplexing,” J. Phys. D Appl. Phys. 41(22), 224004 (2008).
    [CrossRef]
  24. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72 (1966).
    [CrossRef]
  25. B. Sturman, and V. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials, (Gordon & Breach Science Publishers, 1992).
  26. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  27. P. Günter, and J.-P. Huignard, Photorefractive Materials and their Applications 1: basic effects, (Springer, 2006).
  28. P. M. Kruglyakov, Hydrophile - Lipophile Balance of Surfactants and Solid Particles, (Elsevier, 2000).
  29. N. Markarian, M. Yeksel, B. Khusid, K. Farmer, and A. Acrivos, “Limitations on the scale of an electrode array for trapping particles in microfluidics by positive dielectrophoresis,” Appl. Phys. Lett. 82(26), 4839–4841 (2003).
    [CrossRef]
  30. X. Z. Zhang, J. Q. Wang, B. Q. Tang, X. H. Tan, R. A. Rupp, L. T. Pan, Y. F. Kong, Q. Sun, and J. J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17(12), 9981–9988 (2009).
    [CrossRef] [PubMed]
  31. P. Yeh, “Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research,” Appl. Opt. 26(4), 602–604 (1987).
    [CrossRef] [PubMed]

2010

N. Ranjan, M. Mertig, G. Cuniberti, and W. Pompe, “Dielectrophoretic growth of metallic nanowires and microwires: theory and experiments,” Langmuir 26(1), 552–559 (2010).
[CrossRef]

2009

2008

S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
[CrossRef]

P. Rose, B. Terhalle, J. Imbrock, and C. Denz, “Optically induced photonic superlattices by holographic multiplexing,” J. Phys. D Appl. Phys. 41(22), 224004 (2008).
[CrossRef]

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef]

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

2007

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

2006

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[CrossRef] [PubMed]

2005

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

V. V. Krishnamachari, O. Grothe, H. Deitmar, and C. Denz, “Novelty filtering with a photorefractive lithium-niobate crystal,” Appl. Phys. Lett. 87(7), 071105 (2005).
[CrossRef]

2004

K. H. Bhatt and O. D. Velev, “Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires,” Langmuir 20(2), 467–476 (2004).
[CrossRef]

C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, “Disposable Smart lab on a chip for point-of-care clinical diagnostics,” Proc. IEEE 92(1), 154–173 (2004).
[CrossRef]

2003

N. Markarian, M. Yeksel, B. Khusid, K. Farmer, and A. Acrivos, “Limitations on the scale of an electrode array for trapping particles in microfluidics by positive dielectrophoresis,” Appl. Phys. Lett. 82(26), 4839–4841 (2003).
[CrossRef]

2002

P. R. C. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
[CrossRef] [PubMed]

2001

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, “Electrically controlled volume LiNbO3 holograms for wavelength demultiplexing systems,” Opt. Mater. 18(1), 191–194 (2001).
[CrossRef]

1999

H. Morgan, M. P. Hughes, and N. G. Green, “Separation of submicron bioparticles by dielectrophoresis,” Biophys. J. 77(1), 516–525 (1999).
[CrossRef] [PubMed]

1998

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

1997

H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, and T. C. Tan, “Large-area travelling wave dielectrophoresis particle separator,” J. Micromech. Microeng. 7(2), 65–70 (1997).
[CrossRef]

1993

D. M. Pai and B. E. Springett, “Physics of Electrophotography,” Rev. Mod. Phys. 65(1), 163–211 (1993).
[CrossRef]

1987

1970

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

1969

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

1966

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72 (1966).
[CrossRef]

1958

H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29(8), 1182–1188 (1958).
[CrossRef]

Acrivos, A.

N. Markarian, M. Yeksel, B. Khusid, K. Farmer, and A. Acrivos, “Limitations on the scale of an electrode array for trapping particles in microfluidics by positive dielectrophoresis,” Appl. Phys. Lett. 82(26), 4839–4841 (2003).
[CrossRef]

Adleman, J. R.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Ahn, C. H.

C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, “Disposable Smart lab on a chip for point-of-care clinical diagnostics,” Proc. IEEE 92(1), 154–173 (2004).
[CrossRef]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72 (1966).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72 (1966).
[CrossRef]

Beaucage, G.

C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, “Disposable Smart lab on a chip for point-of-care clinical diagnostics,” Proc. IEEE 92(1), 154–173 (2004).
[CrossRef]

Bhatt, K. H.

K. H. Bhatt and O. D. Velev, “Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires,” Langmuir 20(2), 467–476 (2004).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72 (1966).
[CrossRef]

Buse, K.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Choi, J. W.

C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, “Disposable Smart lab on a chip for point-of-care clinical diagnostics,” Proc. IEEE 92(1), 154–173 (2004).
[CrossRef]

Cuniberti, G.

N. Ranjan, M. Mertig, G. Cuniberti, and W. Pompe, “Dielectrophoretic growth of metallic nanowires and microwires: theory and experiments,” Langmuir 26(1), 552–559 (2010).
[CrossRef]

Deitmar, H.

V. V. Krishnamachari, O. Grothe, H. Deitmar, and C. Denz, “Novelty filtering with a photorefractive lithium-niobate crystal,” Appl. Phys. Lett. 87(7), 071105 (2005).
[CrossRef]

Denz, C.

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

P. Rose, B. Terhalle, J. Imbrock, and C. Denz, “Optically induced photonic superlattices by holographic multiplexing,” J. Phys. D Appl. Phys. 41(22), 224004 (2008).
[CrossRef]

V. V. Krishnamachari, O. Grothe, H. Deitmar, and C. Denz, “Novelty filtering with a photorefractive lithium-niobate crystal,” Appl. Phys. Lett. 87(7), 071105 (2005).
[CrossRef]

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, “Electrically controlled volume LiNbO3 holograms for wavelength demultiplexing systems,” Opt. Mater. 18(1), 191–194 (2001).
[CrossRef]

Duffy, D. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72 (1966).
[CrossRef]

Eggert, H. A.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Farmer, K.

N. Markarian, M. Yeksel, B. Khusid, K. Farmer, and A. Acrivos, “Limitations on the scale of an electrode array for trapping particles in microfluidics by positive dielectrophoresis,” Appl. Phys. Lett. 82(26), 4839–4841 (2003).
[CrossRef]

Ferraro, P.

S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
[CrossRef]

Gascoyne, P. R. C.

P. R. C. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
[CrossRef] [PubMed]

Green, N. G.

H. Morgan, M. P. Hughes, and N. G. Green, “Separation of submicron bioparticles by dielectrophoresis,” Biophys. J. 77(1), 516–525 (1999).
[CrossRef] [PubMed]

H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, and T. C. Tan, “Large-area travelling wave dielectrophoresis particle separator,” J. Micromech. Microeng. 7(2), 65–70 (1997).
[CrossRef]

Grilli, S.

S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
[CrossRef]

Grothe, O.

V. V. Krishnamachari, O. Grothe, H. Deitmar, and C. Denz, “Novelty filtering with a photorefractive lithium-niobate crystal,” Appl. Phys. Lett. 87(7), 071105 (2005).
[CrossRef]

Holtmann, F.

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

Hughes, M. P.

H. Morgan, M. P. Hughes, and N. G. Green, “Separation of submicron bioparticles by dielectrophoresis,” Biophys. J. 77(1), 516–525 (1999).
[CrossRef] [PubMed]

H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, and T. C. Tan, “Large-area travelling wave dielectrophoresis particle separator,” J. Micromech. Microeng. 7(2), 65–70 (1997).
[CrossRef]

Hung, L. H.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Imbrock, J.

P. Rose, B. Terhalle, J. Imbrock, and C. Denz, “Optically induced photonic superlattices by holographic multiplexing,” J. Phys. D Appl. Phys. 41(22), 224004 (2008).
[CrossRef]

Jonás, A.

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef]

Khusid, B.

N. Markarian, M. Yeksel, B. Khusid, K. Farmer, and A. Acrivos, “Limitations on the scale of an electrode array for trapping particles in microfluidics by positive dielectrophoresis,” Appl. Phys. Lett. 82(26), 4839–4841 (2003).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Kong, Y. F.

Krishnamachari, V. V.

V. V. Krishnamachari, O. Grothe, H. Deitmar, and C. Denz, “Novelty filtering with a photorefractive lithium-niobate crystal,” Appl. Phys. Lett. 87(7), 071105 (2005).
[CrossRef]

Kuhnert, F. Y.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Lee, A. P.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Lee, J. B.

C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, “Disposable Smart lab on a chip for point-of-care clinical diagnostics,” Proc. IEEE 92(1), 154–173 (2004).
[CrossRef]

Lee, J. Y.

C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, “Disposable Smart lab on a chip for point-of-care clinical diagnostics,” Proc. IEEE 92(1), 154–173 (2004).
[CrossRef]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72 (1966).
[CrossRef]

Lin, R.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Markarian, N.

N. Markarian, M. Yeksel, B. Khusid, K. Farmer, and A. Acrivos, “Limitations on the scale of an electrode array for trapping particles in microfluidics by positive dielectrophoresis,” Appl. Phys. Lett. 82(26), 4839–4841 (2003).
[CrossRef]

McDonald, J. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Mertig, M.

N. Ranjan, M. Mertig, G. Cuniberti, and W. Pompe, “Dielectrophoretic growth of metallic nanowires and microwires: theory and experiments,” Langmuir 26(1), 552–559 (2010).
[CrossRef]

Monaghan, W.

H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, and T. C. Tan, “Large-area travelling wave dielectrophoresis particle separator,” J. Micromech. Microeng. 7(2), 65–70 (1997).
[CrossRef]

Morgan, H.

H. Morgan, M. P. Hughes, and N. G. Green, “Separation of submicron bioparticles by dielectrophoresis,” Biophys. J. 77(1), 516–525 (1999).
[CrossRef] [PubMed]

H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, and T. C. Tan, “Large-area travelling wave dielectrophoresis particle separator,” J. Micromech. Microeng. 7(2), 65–70 (1997).
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72 (1966).
[CrossRef]

Nevin, J. H.

C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, “Disposable Smart lab on a chip for point-of-care clinical diagnostics,” Proc. IEEE 92(1), 154–173 (2004).
[CrossRef]

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Pai, D. M.

D. M. Pai and B. E. Springett, “Physics of Electrophotography,” Rev. Mod. Phys. 65(1), 163–211 (1993).
[CrossRef]

Pan, L. T.

Petrov, M. P.

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, “Electrically controlled volume LiNbO3 holograms for wavelength demultiplexing systems,” Opt. Mater. 18(1), 191–194 (2001).
[CrossRef]

Petrov, V. M.

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, “Electrically controlled volume LiNbO3 holograms for wavelength demultiplexing systems,” Opt. Mater. 18(1), 191–194 (2001).
[CrossRef]

Pohl, H. A.

H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29(8), 1182–1188 (1958).
[CrossRef]

Pompe, W.

N. Ranjan, M. Mertig, G. Cuniberti, and W. Pompe, “Dielectrophoretic growth of metallic nanowires and microwires: theory and experiments,” Langmuir 26(1), 552–559 (2010).
[CrossRef]

Psaltis, D.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Puntambekar, A.

C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, “Disposable Smart lab on a chip for point-of-care clinical diagnostics,” Proc. IEEE 92(1), 154–173 (2004).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Ranjan, N.

N. Ranjan, M. Mertig, G. Cuniberti, and W. Pompe, “Dielectrophoretic growth of metallic nanowires and microwires: theory and experiments,” Langmuir 26(1), 552–559 (2010).
[CrossRef]

Rose, P.

P. Rose, B. Terhalle, J. Imbrock, and C. Denz, “Optically induced photonic superlattices by holographic multiplexing,” J. Phys. D Appl. Phys. 41(22), 224004 (2008).
[CrossRef]

Rupp, R. A.

Schueller, O. J. A.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Shamray, A. V.

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, “Electrically controlled volume LiNbO3 holograms for wavelength demultiplexing systems,” Opt. Mater. 18(1), 191–194 (2001).
[CrossRef]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72 (1966).
[CrossRef]

Springett, B. E.

D. M. Pai and B. E. Springett, “Physics of Electrophotography,” Rev. Mod. Phys. 65(1), 163–211 (1993).
[CrossRef]

Sun, Q.

Tan, T. C.

H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, and T. C. Tan, “Large-area travelling wave dielectrophoresis particle separator,” J. Micromech. Microeng. 7(2), 65–70 (1997).
[CrossRef]

Tan, X. H.

Tang, B. Q.

Teh, S. Y.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Terhalle, B.

P. Rose, B. Terhalle, J. Imbrock, and C. Denz, “Optically induced photonic superlattices by holographic multiplexing,” J. Phys. D Appl. Phys. 41(22), 224004 (2008).
[CrossRef]

Tschudi, T.

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, “Electrically controlled volume LiNbO3 holograms for wavelength demultiplexing systems,” Opt. Mater. 18(1), 191–194 (2001).
[CrossRef]

Velev, O. D.

K. H. Bhatt and O. D. Velev, “Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires,” Langmuir 20(2), 467–476 (2004).
[CrossRef]

Vykoukal, J.

P. R. C. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
[CrossRef] [PubMed]

Wang, J. Q.

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[CrossRef] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Woerdemann, M.

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Xu, J. J.

Yang, C. H.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yeh, P.

Yeksel, M.

N. Markarian, M. Yeksel, B. Khusid, K. Farmer, and A. Acrivos, “Limitations on the scale of an electrode array for trapping particles in microfluidics by positive dielectrophoresis,” Appl. Phys. Lett. 82(26), 4839–4841 (2003).
[CrossRef]

Zemánek, P.

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef]

Zhang, X. Z.

Anal. Chem.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem. 70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

S. Grilli and P. Ferraro, “Dielectrophoretic trapping of suspended particles by selective pyroelectric effect in lithium niobate crystals,” Appl. Phys. Lett. 92(23), 232902 (2008).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced Refractive Index Inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9(1), 72 (1966).
[CrossRef]

N. Markarian, M. Yeksel, B. Khusid, K. Farmer, and A. Acrivos, “Limitations on the scale of an electrode array for trapping particles in microfluidics by positive dielectrophoresis,” Appl. Phys. Lett. 82(26), 4839–4841 (2003).
[CrossRef]

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

V. V. Krishnamachari, O. Grothe, H. Deitmar, and C. Denz, “Novelty filtering with a photorefractive lithium-niobate crystal,” Appl. Phys. Lett. 87(7), 071105 (2005).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).

Biophys. J.

H. Morgan, M. P. Hughes, and N. G. Green, “Separation of submicron bioparticles by dielectrophoresis,” Biophys. J. 77(1), 516–525 (1999).
[CrossRef] [PubMed]

Electrophoresis

P. R. C. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
[CrossRef] [PubMed]

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008).
[CrossRef]

J. Appl. Phys.

H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29(8), 1182–1188 (1958).
[CrossRef]

J. Micromech. Microeng.

H. Morgan, N. G. Green, M. P. Hughes, W. Monaghan, and T. C. Tan, “Large-area travelling wave dielectrophoresis particle separator,” J. Micromech. Microeng. 7(2), 65–70 (1997).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

M. Woerdemann, F. Holtmann, and C. Denz, “Holographic phase contrast for dynamic multiple-beam optical tweezers,” J. Opt. A, Pure Appl. Opt. 11(3), 034010 (2009).
[CrossRef]

J. Phys. D Appl. Phys.

P. Rose, B. Terhalle, J. Imbrock, and C. Denz, “Optically induced photonic superlattices by holographic multiplexing,” J. Phys. D Appl. Phys. 41(22), 224004 (2008).
[CrossRef]

Lab Chip

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip 8(2), 198–220 (2008).
[CrossRef] [PubMed]

Langmuir

N. Ranjan, M. Mertig, G. Cuniberti, and W. Pompe, “Dielectrophoretic growth of metallic nanowires and microwires: theory and experiments,” Langmuir 26(1), 552–559 (2010).
[CrossRef]

K. H. Bhatt and O. D. Velev, “Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires,” Langmuir 20(2), 467–476 (2004).
[CrossRef]

Nature

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[CrossRef] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater.

V. M. Petrov, C. Denz, A. V. Shamray, M. P. Petrov, and T. Tschudi, “Electrically controlled volume LiNbO3 holograms for wavelength demultiplexing systems,” Opt. Mater. 18(1), 191–194 (2001).
[CrossRef]

Phys. Rev. Lett.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[CrossRef]

Proc. IEEE

C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Lee, A. Puntambekar, and J. Y. Lee, “Disposable Smart lab on a chip for point-of-care clinical diagnostics,” Proc. IEEE 92(1), 154–173 (2004).
[CrossRef]

Rev. Mod. Phys.

D. M. Pai and B. E. Springett, “Physics of Electrophotography,” Rev. Mod. Phys. 65(1), 163–211 (1993).
[CrossRef]

Other

P. Yeh, Introduction to Photorefractive Nonlinear Optics, (Wiley Interscience, 1993).

T. B. Jones, Electrokinetics of Particles, (Cambridge University Press, 1995).

P. Günter, and J.-P. Huignard, Photorefractive Materials and their Applications 1: basic effects, (Springer, 2006).

P. M. Kruglyakov, Hydrophile - Lipophile Balance of Surfactants and Solid Particles, (Elsevier, 2000).

B. Sturman, and V. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials, (Gordon & Breach Science Publishers, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup for structuring a photorefractive crystal using an amplitude modulator

Fig. 2
Fig. 2

PDMS channel geometry (left) and sketch of assembly on photorefractive crystal (right); the channel height in reservoirs and straight section is 50 μm

Fig. 4
Fig. 4

Graphite particles trapped on the surface of the LiNbO3 crystal in triangular and tilted square geometry. In the corners of the pattern, the trapping efficiency reduces to zero, most likely due to dominating dipole-dipole interactions between particles.

Fig. 3
Fig. 3

Contrast enhanced phase-contrast images of the triangular (left) and tilted square pattern (right); total field of view 1.86 mm x 1.85 mm; stripe-like sub-pattern is due to pixel structure of the SLM device

Fig. 5
Fig. 5

Trapped graphite particles at the borders of the lettering “AG Denz” (black box). Image shows the letters A and G and illustrates the reduced trapping efficiency for the modulation perpendicular to the c-axis. The continuous transformation from perpendicular to parallel modulation in the letter G allows for an estimation of the necessary angle between pattern and c-axis.

Fig. 6
Fig. 6

Bright field image of two-dimensional particle trapping in a 300 x 50 μm PDMS microchannel after 30 seconds of particle alignment; note the strong visibility of the refractive index modulation

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F D E P = 2 π r 3 ε m Re [ α ( ω ) ] E 2
α ( ω ) = ε p ( ω ) ε m ( ω ) ε p ( ω ) + 2 ε m ( ω )
F D D / F D E P = 6 α ( r d ) 3 < < 1

Metrics