Abstract

We have observed symmetrical sidebands in reflection from Bragg grating written in a silica suspended-core fiber, which are caused by longitudinal periodic refractive index modulation in the Ge-doped suspended-core fiber with a core diameter of ~1.3 μm. Our simulation shows that the effective refractive index of the guided mode varied by 0.023% along the fiber with a period of ~650 μm. The periodic index variation can lead to amplitude modulation of fiber Bragg gratings, which can be studied by observing the spectra of a fiber Bragg grating written in the Ge-doped core. In addition, we have also characterized the temperature and strain responses of the fiber Bragg gratings, and showed that both responses in the suspended-core fiber are 20 to 25% lower than that of a fiber Bragg grating written on a conventional fiber.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000).
    [CrossRef]
  2. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single mode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
    [CrossRef]
  3. V. V. Kumar, A. K. George, J. C. Knight, and P. Russell, “Tellurite photonic crystal fiber,” Opt. Express 11(20), 2641–2645 (2003).
    [CrossRef] [PubMed]
  4. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11(26), 3568–3573 (2003).
    [CrossRef] [PubMed]
  5. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
    [CrossRef] [PubMed]
  6. K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. van Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly nonlinear silica holey fibers,” Optical Fiber Communications Conference, paper CMC535, Anaheim, California, March 2006.
  7. L. Dong, B. K. Thomas, and L. B. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express 16(21), 16423–16430 (2008).
    [CrossRef] [PubMed]
  8. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
    [CrossRef]
  9. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent field sensing,” Opt. Eng. 46(1), 010503 (2007).
    [CrossRef]
  10. O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot Cavity Based on a Suspended-Core Fiber for Strain and Temperature Measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
    [CrossRef]
  11. L. B. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
    [CrossRef] [PubMed]
  12. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
    [CrossRef] [PubMed]
  13. P. A. Krug, R. Stolte, and R. Ulrich, “Measurement of index modulation along an optical fiber Bragg grating,” Opt. Lett. 20(17), 1767–1769 (1995).
    [CrossRef] [PubMed]
  14. D. Ramecourt, P. Bernage, P. Niay, M. Douay, and I. Riant, “Improvement in the measurement of index modulation along an optical fiber grating by movement of the probe spot perpendicularly to the fiber axis,” Appl. Opt. 40(34), 6166–6169 (2001).
    [CrossRef]
  15. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
    [CrossRef]
  16. L. Labonte, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, “Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres,” Opt. Commun. 262(2), 180–187 (2006).
    [CrossRef]
  17. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  18. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  19. A. C. L. Wong, P. A. Childs, and G.-D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
    [CrossRef]

2009

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot Cavity Based on a Suspended-Core Fiber for Strain and Temperature Measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

2008

2007

2006

L. Labonte, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, “Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres,” Opt. Commun. 262(2), 180–187 (2006).
[CrossRef]

A. C. L. Wong, P. A. Childs, and G.-D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

2004

2003

2002

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single mode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

2001

2000

1999

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[CrossRef]

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1995

Aref, S. H.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot Cavity Based on a Suspended-Core Fiber for Strain and Temperature Measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Asimakis, S.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Auguste, J. L.

Bahloul, F.

L. Labonte, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, “Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres,” Opt. Commun. 262(2), 180–187 (2006).
[CrossRef]

Baptista, J. M.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot Cavity Based on a Suspended-Core Fiber for Strain and Temperature Measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Bennett, P. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[CrossRef]

Bernage, P.

Blanc, W.

Childs, P. A.

A. C. L. Wong, P. A. Childs, and G.-D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Dewynter, V.

Dong, L.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

L. B. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
[CrossRef] [PubMed]

L. Dong, B. K. Thomas, and L. B. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express 16(21), 16423–16430 (2008).
[CrossRef] [PubMed]

Douay, M.

Dussardier, B.

Ebendorff-Heidepriem, H.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Farahi, F.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot Cavity Based on a Suspended-Core Fiber for Strain and Temperature Measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Ferdinand, P.

Finazzi, V.

Frampton, K.

Frazão, O.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot Cavity Based on a Suspended-Core Fiber for Strain and Temperature Measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Fu, L. B.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

L. B. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
[CrossRef] [PubMed]

L. Dong, B. K. Thomas, and L. B. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express 16(21), 16423–16430 (2008).
[CrossRef] [PubMed]

George, A. K.

Hewak, D. W.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single mode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kiang, K. M.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single mode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

Knight, J. C.

Kobelke, J.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot Cavity Based on a Suspended-Core Fiber for Strain and Temperature Measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Koizumi, F.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Krug, P. A.

Kumar, V. V.

Labonte, L.

L. Labonte, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, “Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres,” Opt. Commun. 262(2), 180–187 (2006).
[CrossRef]

Laffont, G.

Lati?, H.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot Cavity Based on a Suspended-Core Fiber for Strain and Temperature Measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Lu, C.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Monro, T. M.

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11(26), 3568–3573 (2003).
[CrossRef] [PubMed]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single mode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[CrossRef]

Moore, R.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single mode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

Moore, R. C.

Niay, P.

Pagnoux, D.

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[CrossRef] [PubMed]

L. Labonte, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, “Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres,” Opt. Commun. 262(2), 180–187 (2006).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Peng, G.-D.

A. C. L. Wong, P. A. Childs, and G.-D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

Petropoulos, P.

Phan Huy, M. C.

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Ramecourt, D.

Ranka, J. K.

Riant, I.

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
[CrossRef] [PubMed]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11(26), 3568–3573 (2003).
[CrossRef] [PubMed]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single mode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[CrossRef]

Roy, P.

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[CrossRef] [PubMed]

L. Labonte, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, “Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres,” Opt. Commun. 262(2), 180–187 (2006).
[CrossRef]

Russell, P.

Rutt, H. N.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single mode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Santos, J. L.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot Cavity Based on a Suspended-Core Fiber for Strain and Temperature Measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Schuster, K.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot Cavity Based on a Suspended-Core Fiber for Strain and Temperature Measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

Stentz, A. J.

Stolte, R.

Tam, H. Y.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Thomas, B. K.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

L. B. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
[CrossRef] [PubMed]

L. Dong, B. K. Thomas, and L. B. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express 16(21), 16423–16430 (2008).
[CrossRef] [PubMed]

Tse, M. L. V.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Tucknott, J.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single mode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

Ulrich, R.

Wai, P. K. A.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Windeler, R. S.

Wong, A. C. L.

A. C. L. Wong, P. A. Childs, and G.-D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

Zghal, M.

L. Labonte, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, “Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres,” Opt. Commun. 262(2), 180–187 (2006).
[CrossRef]

Appl. Opt.

Electron. Lett.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded single mode non-silica glass holey optical fibres,” Electron. Lett. 38(12), 546–547 (2002).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

O. Frazão, S. H. Aref, J. M. Baptista, J. L. Santos, H. Latifi, F. Farahi, J. Kobelke, and K. Schuster, “Fabry–Pérot Cavity Based on a Suspended-Core Fiber for Strain and Temperature Measurement,” IEEE Photon. Technol. Lett. 21(17), 1229–1231 (2009).
[CrossRef]

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: a simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Meas. Sci. Technol.

A. C. L. Wong, P. A. Childs, and G.-D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

Opt. Commun.

L. Labonte, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, “Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres,” Opt. Commun. 262(2), 180–187 (2006).
[CrossRef]

Opt. Eng.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent field sensing,” Opt. Eng. 46(1), 010503 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. van Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly nonlinear silica holey fibers,” Optical Fiber Communications Conference, paper CMC535, Anaheim, California, March 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic of the experimental setup of the FBG photo-written onto the hydrogen loaded Ge-Doped suspended core fiber with periodic diameter variation. Inset: the SEM picture of the fiber’s core-cladding region.

Fig. 2
Fig. 2

The suspended core fiber FBG reflection spectrum measured by an OSA. Inset: one of the observed spectra when the input polarization is changed using a pair of fiber optic polarizers.

Fig. 3
Fig. 3

Simulated spectra of (a) a FBG written on a conventional single-mode fiber with constant effective index along the fiber length, and (b) the suspended core fiber with a periodic effective index profile. (i) Shows the effective index profile of the two fibers. (ii) The apodization profile used for both fibers. (iii) The simulated spectra of the slow axis. (iv) The reflection spectra observed in the experiment with the same setup.

Fig. 4
Fig. 4

A graph to show the change in effective index as the whole structure was scaled in size.

Fig. 5
Fig. 5

A graph to show the amplitude difference between the Bragg and side peaks.

Fig. 6
Fig. 6

(a) The FBG reflection spectra of the suspended core fiber at different temperature at the slow axis. (b) The maxima of the three peaks at different temperature.

Fig. 7
Fig. 7

The strain response of the FBG written on the suspended-core fiber and a conventional fiber using the same phase mask. Note the difference in the Bragg wavelength and the strain scale is presented in weight.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n e f f Λ ,
Δ λ = λ B 2 2 n e f f P
1 λ B δ λ B δ T = 6.67 × 10 6 C o 1 ,
1 λ B δ λ B δ ε = 0.78 × 10 6 μ ε 1 ,
δ λ B λ B = 0.78 w A E ,

Metrics