Abstract

In free space optical (FSO) communication, atmospheric turbulence causes fluctuation in both intensity and phase of the received light signal what may seriously impair the link performance. Additionally, turbulent inhomogeneities may produce optical pulse spreading. In this paper, a simple rate adaptive transmission technique based on the use of variable silence periods and on-off keying (OOK) formats with memory is presented. This technique was previously proposed in indoor unguided optical links by the authors with very good performance. Such transmission scheme is now extensively analyzed in terms of burst error rate, and shown in this paper as an excellent alternative compared with the classical scheme based on repetition coding and pulse-position modulation (PPM), presenting a greater robustness to adverse conditions of turbulence.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46–51 (2006).
    [CrossRef]
  2. A. Belmonte, and J. M. Kahn, “Efficiency of complex modulation methods in coherent free-space optical links,” Opt. Express 18, 3928–3937 (2010).
    [CrossRef] [PubMed]
  3. A. Belmonte, and J. M. Kahn, “Capacity of coherent free-space optical links using diversity-combining techniques,” Opt. Express 17, 12601–12611 (2009).
    [CrossRef] [PubMed]
  4. J. J. Laserna, R. Fernández Reyes, R. González, L. Tobaria, and P. Lucena, “Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements,” Opt. Express 17, 10265–10276 (2009).
    [CrossRef] [PubMed]
  5. P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imaging in support of Earth-space optical communication,” Opt. Express 17, 7862–7872 (2009).
    [CrossRef] [PubMed]
  6. X. Zhu, and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
    [CrossRef]
  7. M. Al Naboulsi, and H. Sizun, “Fog attenuation prediction for optical and infrared waves,” SPIE Optical Engineering 43, 319–329 (2004).
  8. A. Jurado Navas, A. García Zambrana, and A. Puerta Notario, “Efficient lognormal channel model for turbulent FSO communications,” Electron. Lett. 43, 178–179 (2007).
    [CrossRef]
  9. A. Jurado-Navas, and A. Puerta-Notario, “Generation of Correlated Scintillations on Atmospheric Optical Communications,” J. Opt. Commun. Netw 1, 452–462 (2009).
    [CrossRef]
  10. A. Jurado-Navas, J. M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “Numerical model for the temporal broadening of optical pulses propagating through weak atmospheric turbulence,” Opt. Lett. 34, 3662–3664 (2009).
    [CrossRef] [PubMed]
  11. A. García-Zambrana, and A. Puerta-Notario, “Novel approach for increasing the peak-to-average optical power ratio in rate-adaptive optical wireless communication systems,” IEE Proc. Optoelectron.: Special Issue on Optical Wireless Communications 150, 439–444 (2003).
  12. L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media, (Bellingham, Washington, 1998).
  13. A. Ishimaru, Wave Propagation and Scattering in Random Media, (Academic Press, New York, 1978).
  14. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation, (Jerusalem: Israel Program for Scientific Translations, 1971).
  15. J. W. Strohbehn, “Modern theories in the propagation of optical waves in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J.W. Strohbehn ed. (Springer, New York, 1978), pp. 45–106.
  16. D. L. Fried, “Aperture averaging of scintillation,” J. Opt. Soc. Am. 57, 169–175 (1967).
    [CrossRef]
  17. R. Lawrence, and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970).
    [CrossRef]
  18. Y. Ruike, H. Xiange, H. Yue, and S. Zhongyu, “Propagation Characteristics of Infrared Pulse Waves through Windblown Sand and Dust Atmosphere,” Int. J. Infrared Millim. Waves 28, 181 (2007).
    [CrossRef]
  19. C. H. Liu, and K. C. Yeh, “Propagation of pulsed beam waves through turbulence, Cloud, Rain or Fog,” J. Opt. Soc. Am. 67, 1261–1266 (1977).
    [CrossRef]
  20. L. C. Lee, “Wave Propagation in a Random Medium: A Complete set of the moment equations with different wavenumbers,” J. Math. Phys. 15, 1431–1435 (1974).
    [CrossRef]
  21. C. Y. Young, A. Ishimaru, and L. C. Andrews, “Two-frequency mutual coherence function of a Gaussian beam pulse in weak optical turbulence: an analytic solution,” Appl. Opt. 35, 6522–6526 (1996).
    [CrossRef] [PubMed]
  22. I. Sreenivasiah, and A. Ishimaru, “Beam wave two-frequency mutual coherence function and pulse propagation in random media: an analytic solution to the plane wave case,” Appl. Opt. 18, 1613–1618 (1979).
    [CrossRef] [PubMed]
  23. C. Y. Young, L. C. Andrews, and A. Ishimaru, “Time-of-arrival fluctuations of a space-time Gaussian pulse in weak optical turbulence: an analytic solution,” Appl. Opt. 37, 7655–7660 (1998).
    [CrossRef]
  24. A. Christen, E. van Gorsel, and R. Vogt, “Coherent structures in urban roughness sublayer turbulence,” Int. J. Climatol. 27, 1955–1968 (2007).
    [CrossRef]
  25. A. Christen, M. W. Rotach, and R. Vogt, “Experimental determination of the turbulent kinetic energy budget within and above an Urban Canopy”, Fifth AMS Symposium on the Urban Environment, Vancouver (Canada), 23–27 Aug. 2004.
  26. L. Deutsch and R. Miller, “Burst statistics of Viterbi decoding,” The Telec. and Data Acquisition Progress Report, TDA PR 42–64, 187–193 (1981).
  27. A. García-Zambrana, and A. Puerta-Notario, “Improving PPM schemes in wireless infrared links at high bit rates,” IEEE Commun. Lett. 5, 95–97 (2001).
    [CrossRef]
  28. J. M. Garrido-Balsells, A. Jurado-Navas, M. Castillo-Vázquez, A.B. Moreno-Garrido and A. Puerta-Notario, are preparing a manuscript to be called “Improving optical wireless links performance by solitonic shape pulses.”
  29. T. Brabec, Ch. Spielmann, and E. Krausz, “Mode locking in solitary lasers,” Opt. Lett. 16, 1961–1963 (1991).
    [CrossRef] [PubMed]
  30. F. X. Kärtner, D. Kopf, and U. Keller, “Solitary-pulse stabilization and shortening in actively mode-locked lasers,” J. Opt. Soc. Am. B 12, 486–496 (1995).
    [CrossRef]
  31. Q. Yao, and M. Patzold, “Spatial-temporal characteristics of a half-spheroid model and its corresponding simulation model,” IEEE 59th Vehicular Technology Conference, VTC 2004-Spring, 1, 147–151 (2004).
  32. D. L. Fried, and J. D. Cloud, “Propagation of an infinite plane wave in a randomly inhomogeneous medium,” J. Opt. Soc. Am. 56, 1667–1676 (1966).
    [CrossRef]

2010 (1)

2009 (5)

2007 (3)

Y. Ruike, H. Xiange, H. Yue, and S. Zhongyu, “Propagation Characteristics of Infrared Pulse Waves through Windblown Sand and Dust Atmosphere,” Int. J. Infrared Millim. Waves 28, 181 (2007).
[CrossRef]

A. Jurado Navas, A. García Zambrana, and A. Puerta Notario, “Efficient lognormal channel model for turbulent FSO communications,” Electron. Lett. 43, 178–179 (2007).
[CrossRef]

A. Christen, E. van Gorsel, and R. Vogt, “Coherent structures in urban roughness sublayer turbulence,” Int. J. Climatol. 27, 1955–1968 (2007).
[CrossRef]

2006 (1)

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46–51 (2006).
[CrossRef]

2004 (1)

M. Al Naboulsi, and H. Sizun, “Fog attenuation prediction for optical and infrared waves,” SPIE Optical Engineering 43, 319–329 (2004).

2003 (1)

A. García-Zambrana, and A. Puerta-Notario, “Novel approach for increasing the peak-to-average optical power ratio in rate-adaptive optical wireless communication systems,” IEE Proc. Optoelectron.: Special Issue on Optical Wireless Communications 150, 439–444 (2003).

2002 (1)

X. Zhu, and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

2001 (1)

A. García-Zambrana, and A. Puerta-Notario, “Improving PPM schemes in wireless infrared links at high bit rates,” IEEE Commun. Lett. 5, 95–97 (2001).
[CrossRef]

1998 (1)

1996 (1)

1995 (1)

1991 (1)

1979 (1)

1977 (1)

1974 (1)

L. C. Lee, “Wave Propagation in a Random Medium: A Complete set of the moment equations with different wavenumbers,” J. Math. Phys. 15, 1431–1435 (1974).
[CrossRef]

1970 (1)

R. Lawrence, and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970).
[CrossRef]

1967 (1)

1966 (1)

Al Naboulsi, M.

M. Al Naboulsi, and H. Sizun, “Fog attenuation prediction for optical and infrared waves,” SPIE Optical Engineering 43, 319–329 (2004).

Andrews, L. C.

Belmonte, A.

Brabec, T.

Castillo-Vázquez, M.

Christen, A.

A. Christen, E. van Gorsel, and R. Vogt, “Coherent structures in urban roughness sublayer turbulence,” Int. J. Climatol. 27, 1955–1968 (2007).
[CrossRef]

Cloud, J. D.

Dwivedi, A.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46–51 (2006).
[CrossRef]

Fernández Reyes, R.

Fried, D. L.

García Zambrana, A.

A. Jurado Navas, A. García Zambrana, and A. Puerta Notario, “Efficient lognormal channel model for turbulent FSO communications,” Electron. Lett. 43, 178–179 (2007).
[CrossRef]

García-Zambrana, A.

A. García-Zambrana, and A. Puerta-Notario, “Novel approach for increasing the peak-to-average optical power ratio in rate-adaptive optical wireless communication systems,” IEE Proc. Optoelectron.: Special Issue on Optical Wireless Communications 150, 439–444 (2003).

A. García-Zambrana, and A. Puerta-Notario, “Improving PPM schemes in wireless infrared links at high bit rates,” IEEE Commun. Lett. 5, 95–97 (2001).
[CrossRef]

Garrido-Balsells, J. M.

González, R.

Hammons, A. R.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46–51 (2006).
[CrossRef]

Ishimaru, A.

Jones, S. D.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46–51 (2006).
[CrossRef]

Juarez, J. C.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46–51 (2006).
[CrossRef]

Jurado Navas, A.

A. Jurado Navas, A. García Zambrana, and A. Puerta Notario, “Efficient lognormal channel model for turbulent FSO communications,” Electron. Lett. 43, 178–179 (2007).
[CrossRef]

Jurado-Navas, A.

Kahn, J. M.

Kärtner, F. X.

Keller, U.

Kopf, D.

Krausz, E.

Laserna, J. J.

Lawrence, R.

R. Lawrence, and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970).
[CrossRef]

Lee, L. C.

L. C. Lee, “Wave Propagation in a Random Medium: A Complete set of the moment equations with different wavenumbers,” J. Math. Phys. 15, 1431–1435 (1974).
[CrossRef]

Liu, C. H.

Lucena, P.

Nichols, R. A.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46–51 (2006).
[CrossRef]

Nugent, P. W.

Piazzolla, S.

Puerta Notario, A.

A. Jurado Navas, A. García Zambrana, and A. Puerta Notario, “Efficient lognormal channel model for turbulent FSO communications,” Electron. Lett. 43, 178–179 (2007).
[CrossRef]

Puerta-Notario, A.

A. Jurado-Navas, and A. Puerta-Notario, “Generation of Correlated Scintillations on Atmospheric Optical Communications,” J. Opt. Commun. Netw 1, 452–462 (2009).
[CrossRef]

A. Jurado-Navas, J. M. Garrido-Balsells, M. Castillo-Vázquez, and A. Puerta-Notario, “Numerical model for the temporal broadening of optical pulses propagating through weak atmospheric turbulence,” Opt. Lett. 34, 3662–3664 (2009).
[CrossRef] [PubMed]

A. García-Zambrana, and A. Puerta-Notario, “Novel approach for increasing the peak-to-average optical power ratio in rate-adaptive optical wireless communication systems,” IEE Proc. Optoelectron.: Special Issue on Optical Wireless Communications 150, 439–444 (2003).

A. García-Zambrana, and A. Puerta-Notario, “Improving PPM schemes in wireless infrared links at high bit rates,” IEEE Commun. Lett. 5, 95–97 (2001).
[CrossRef]

Ruike, Y.

Y. Ruike, H. Xiange, H. Yue, and S. Zhongyu, “Propagation Characteristics of Infrared Pulse Waves through Windblown Sand and Dust Atmosphere,” Int. J. Infrared Millim. Waves 28, 181 (2007).
[CrossRef]

Shaw, J. A.

Sizun, H.

M. Al Naboulsi, and H. Sizun, “Fog attenuation prediction for optical and infrared waves,” SPIE Optical Engineering 43, 319–329 (2004).

Spielmann, Ch.

Sreenivasiah, I.

Strohbehn, J. W.

R. Lawrence, and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970).
[CrossRef]

Tobaria, L.

van Gorsel, E.

A. Christen, E. van Gorsel, and R. Vogt, “Coherent structures in urban roughness sublayer turbulence,” Int. J. Climatol. 27, 1955–1968 (2007).
[CrossRef]

Vogt, R.

A. Christen, E. van Gorsel, and R. Vogt, “Coherent structures in urban roughness sublayer turbulence,” Int. J. Climatol. 27, 1955–1968 (2007).
[CrossRef]

Weerackody, V.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46–51 (2006).
[CrossRef]

Xiange, H.

Y. Ruike, H. Xiange, H. Yue, and S. Zhongyu, “Propagation Characteristics of Infrared Pulse Waves through Windblown Sand and Dust Atmosphere,” Int. J. Infrared Millim. Waves 28, 181 (2007).
[CrossRef]

Yeh, K. C.

Young, C. Y.

Yue, H.

Y. Ruike, H. Xiange, H. Yue, and S. Zhongyu, “Propagation Characteristics of Infrared Pulse Waves through Windblown Sand and Dust Atmosphere,” Int. J. Infrared Millim. Waves 28, 181 (2007).
[CrossRef]

Zhongyu, S.

Y. Ruike, H. Xiange, H. Yue, and S. Zhongyu, “Propagation Characteristics of Infrared Pulse Waves through Windblown Sand and Dust Atmosphere,” Int. J. Infrared Millim. Waves 28, 181 (2007).
[CrossRef]

Zhu, X.

X. Zhu, and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

A. Jurado Navas, A. García Zambrana, and A. Puerta Notario, “Efficient lognormal channel model for turbulent FSO communications,” Electron. Lett. 43, 178–179 (2007).
[CrossRef]

IEE Proc. Optoelectron.: Special Issue on Optical Wireless Communications (1)

A. García-Zambrana, and A. Puerta-Notario, “Novel approach for increasing the peak-to-average optical power ratio in rate-adaptive optical wireless communication systems,” IEE Proc. Optoelectron.: Special Issue on Optical Wireless Communications 150, 439–444 (2003).

IEEE Commun. Lett. (1)

A. García-Zambrana, and A. Puerta-Notario, “Improving PPM schemes in wireless infrared links at high bit rates,” IEEE Commun. Lett. 5, 95–97 (2001).
[CrossRef]

IEEE Commun. Mag. (1)

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, “Free-space optical communications for next-generation military networks,” IEEE Commun. Mag. 44, 46–51 (2006).
[CrossRef]

IEEE Trans. Commun. (1)

X. Zhu, and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

Int. J. Climatol. (1)

A. Christen, E. van Gorsel, and R. Vogt, “Coherent structures in urban roughness sublayer turbulence,” Int. J. Climatol. 27, 1955–1968 (2007).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

Y. Ruike, H. Xiange, H. Yue, and S. Zhongyu, “Propagation Characteristics of Infrared Pulse Waves through Windblown Sand and Dust Atmosphere,” Int. J. Infrared Millim. Waves 28, 181 (2007).
[CrossRef]

J. Math. Phys. (1)

L. C. Lee, “Wave Propagation in a Random Medium: A Complete set of the moment equations with different wavenumbers,” J. Math. Phys. 15, 1431–1435 (1974).
[CrossRef]

J. Opt. Commun. Netw (1)

A. Jurado-Navas, and A. Puerta-Notario, “Generation of Correlated Scintillations on Atmospheric Optical Communications,” J. Opt. Commun. Netw 1, 452–462 (2009).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (2)

Proc. IEEE (1)

R. Lawrence, and J. W. Strohbehn, “A survey of clear-air propagation effects relevant to optical communications,” Proc. IEEE 58, 1523–1545 (1970).
[CrossRef]

SPIE Optical Engineering (1)

M. Al Naboulsi, and H. Sizun, “Fog attenuation prediction for optical and infrared waves,” SPIE Optical Engineering 43, 319–329 (2004).

Other (8)

L. C. Andrews, and R. L. Phillips, Laser Beam Propagation through Random Media, (Bellingham, Washington, 1998).

A. Ishimaru, Wave Propagation and Scattering in Random Media, (Academic Press, New York, 1978).

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation, (Jerusalem: Israel Program for Scientific Translations, 1971).

J. W. Strohbehn, “Modern theories in the propagation of optical waves in a turbulent medium,” in Laser Beam Propagation in the Atmosphere, J.W. Strohbehn ed. (Springer, New York, 1978), pp. 45–106.

J. M. Garrido-Balsells, A. Jurado-Navas, M. Castillo-Vázquez, A.B. Moreno-Garrido and A. Puerta-Notario, are preparing a manuscript to be called “Improving optical wireless links performance by solitonic shape pulses.”

A. Christen, M. W. Rotach, and R. Vogt, “Experimental determination of the turbulent kinetic energy budget within and above an Urban Canopy”, Fifth AMS Symposium on the Urban Environment, Vancouver (Canada), 23–27 Aug. 2004.

L. Deutsch and R. Miller, “Burst statistics of Viterbi decoding,” The Telec. and Data Acquisition Progress Report, TDA PR 42–64, 187–193 (1981).

Q. Yao, and M. Patzold, “Spatial-temporal characteristics of a half-spheroid model and its corresponding simulation model,” IEEE 59th Vehicular Technology Conference, VTC 2004-Spring, 1, 147–151 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Burst error rate versus normalized average optical power using OOK-GS format and duty cycle (d.c.) of 25%. Classic NRZ format and OOK-GS with a 100% d.c. are also displayed for σ 2 χ =0.1(upper subfigures) and σ 2 χ =0.01(lower subfigures). The burst error length is fixed to (a) and (c) 192 bits; (b) and (d) 64 bits. All subfigures show the obtained performance from the theoretical Kolmogorov spectrum and the approximated Gaussian one.

Fig. 2.
Fig. 2.

Burst error rate versus normalized average optical power using 4PPM and OOK-GS formats and duty cycle (d.c.) of 25%. Classic NRZ format and OOK-GS with a 100% d.c. are also displayed for σ 2 χ= 0.1 (upper subfigures) and σ 2 χ = 0.01 (lower subfigures). The burst error length is established to (a) and (c) 192 bits; (b) and (d) 64 bits.

Fig. 3.
Fig. 3.

Burst error rate versus normalized average optical power using OOK-GS formats and duty cycle (d.c.) of 25%. Classic adaptive transmission technique with a rate reduction factor of RR is displayed in comparison to the one based on the insertion of RRs − 1 silence bit periods after an information bit, for σ 2 χ = 0.1 (upper subfigures) and σ 2 χ = 0.01 (lower subfigures). The burst error length is established to (a) and (c) 192 bits; (b) and (d) 64 bits.

Fig. 4.
Fig. 4.

Generic OOK-GSc scheme with an extra rate-adaptive transmission technique stage based on inserting variable silence times.

Fig. 5.
Fig. 5.

Burst error rate versus normalized average optical power using OOK-GS formats with and without memory and duty cycle (d.c.) of 25%. The adaptive transmission technique based on the insertion of RRs − 1 silence bit periods is adopted for σ 2 χ = 0.1 (upper subfigures) and σ 2 χ = 0.01 (lower subfigures). The burst error length is established to (a) and (c) 192 bits; (b) and (d) 64 bits.

Fig. 6.
Fig. 6.

Histograms representing the number of sequences consisting of an association of k consecutive correct bits for different additive noise power of magnitudes: (a)–(b) −22 optical dB; (c)–(d) −19 optical dB; and (e)–(f) − 17 optical dB. These results are generated from the OOK-GSc scheme with RR=4 (i.e., RR=RRc · RRs with RRc =2 and RRs =2) and the OOK-GScc format with its inherent RR=4 (RRc =4, RRs =1), both obtained from Fig. 5(c).

Fig. 7.
Fig. 7.

Burst error rate versus normalized average optical power using OOK-GSc and OOK-GScc formats with duty cycle (d.c.) of 25% for σ 2 χ =0.1 (solid lines) and σ 2 χ =0.01 (dashed lines). The adaptive transmission technique based on the insertion of only 1 silence bit period is adopted for the OOK-GSc format so that the total rate reduction factor is fixed to 4 for all cases. The burst error length, with Lb =10, is fixed to (a) 192 bits; (b) 64 bits.

Fig. 8.
Fig. 8.

Bit error rate versus normalized average optical power using OOK format with memory (OOK-GSc and OOK-GScc) for σ 2 χ = 0.1 and σ 2 χ = 0.01.

Fig. 9.
Fig. 9.

Burst error rate versus normalized average optical power using 4GPPM with both a TD detection procedure and a ML detector; and OOK-GSc format and duty cycle (d.c.) of 25% using a ML detection procedure. The burst error length is established to (a) and (c) 192 bits; (b) and (d) 64 bits; and σ 2 χ =0.1 (upper subfigures) and σ 2 χ =0.01 (lower subfigures).

Fig. 10.
Fig. 10.

Optical power pulse shape for different normalized pulses, pN(t), with a reduced duty cycle, ξ and transmitted each bit period, Tb .

Tables (1)

Tables Icon

Table 1. Γ PAOPR for rectangular and Gaussian pulse shapes and ξ = 1, 0.5 and 0.25

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

Φ n ( κ ) = 0.033 C n 2 ( z ) κ 11 3 , 0 < κ <
u ( r , L ) = A ( r , L ) · exp [ j ϕ ( r , L ) ] = u 0 ( r , L ) · exp [ Φ 1 ( r , L ) ] ,
Φ 1 ( r , L ) = log [ A ( r , L ) A 0 ( r , L ) ] + j [ ϕ ( r , L ) ϕ 0 ( r , L ) ] = χ + j S .
I ( t ) = I 0 exp ( 2 χ ( t ) ) ,
B I ( r , L ) = 8 π 2 k 2 L 0 ( 1 k κ 2 L sin κ 2 L k ) Φ n ( κ ) J 0 ( κ r ) κ d κ
B I ( u τ ) σ 1 2 exp ( τ 2 τ 0 2 ) , l 0 r λ L ,
H sc ( f ) 2 = σ χ 2 τ 0 π e ( π τ 0 f ) 2 .
T 2 = ( T 0 2 + 8 α ) ,
α = 0.3908 C n 2 L L 0 5 3 c 2 ,
x ( t ) = k a k · P peak · p n ( t k T b ) k Z ,
PAOPR = P peak P = [ p r ( a k = 1 ) · P n ] 1 .
Γ PAOPR = PAOPR PAOPR ref = 1 P n ,
Γ PAOPR = 1 ξ .
p n ( t ) = e ( t t 0 ) 2 2 σ p 2 ,
Γ PAOPR = 2 π 3 ξ [ erf ( 1 2 3 ξ ) ] 1 ,
Γ PAOPR = R R s 2 π 3 ξ [ erf ( 1 2 3 ξ ) ] 1 .
Γ PAOPR = 3 2 R R 2 π 3 ξ [ erf ( 1 2 3 ξ ) ] 1 .
Γ PAOPR = 2 R R 2 π 3 ξ [ erf ( 1 2 3 ξ ) ] 1 .
B μ i μ i ( 1 ) = 1 j 2 π · d d τ ( B I ( 0 ) ) · 1 B I ( 0 ) .
d d τ ( B I ( u τ ) ) = 2 σ I 2 τ τ 0 2 exp ( τ 2 τ 0 2 ) ,
B I ( r , L ) = 8 π 2 · 0.033 C n 2 k 2 L { 0 κ 11 3 J 0 ( κ r ) κ d κ - 0 k κ 2 L sin ( κ 2 L k ) κ 11 3 J 0 ( κ r ) κ d κ } ,
0 x α J 0 ( β x 1 2 ) d x = ( 4 β 2 ) α + 1 Γ ( α + 1 ) Γ ( α ) ;
0 x α 1 sin x J 0 ( β x 1 2 ) d x = Γ ( α ) { sin ( π α 2 ) Re [ 1 F 1 ( α ; 1 ; j β 2 4 ) ]
cos ( π α 2 ) Im [ 1 F 1 ( α ; 1 ; j β 2 4 ) ] } .
B I ( τ , L ) = 4 π 2 · 0.033 · C n 2 k 7 6 L 11 6 [ Γ ( 5 6 ) Γ ( 11 6 ) ( k u 2 τ 2 4 L ) 5 6 +
+ Γ ( 11 6 ) Im { exp ( j 11 π 12 ) 1 F 1 ( 11 6 , 1 , j k u 2 τ 2 4 L ) } ] .
d k d z k ( 1 F 1 ( a ; c ; z ) ) = ( a ) k ( c ) k 1 F 1 ( a + k ; c + k ; z ) , k = 1 , 2 , 3
d d τ ( B I ( τ ) ) τ = 0 = d B I ( τ ) d z d z d τ τ = 0 ,
d B I ( τ ) d z = 4 π 2 0.033 C n 2 k 7 6 L 11 6 [ 5 3 · Γ ( 5 6 ) Γ ( 11 6 ) ( k u 2 4 L ) 5 6 τ 2 3
11 6 Γ ( 11 6 ) Im { exp ( j 11 π 12 ) j k u 2 τ 2 L 1 F 1 ( 5 6 , 2 , j k u 2 τ 2 4 L ) } ] .

Metrics