Abstract

The resonance behavior of localized surface plasmons in silver and gold nanoparticles was studied in the visible and near-infrared regions of the electromagnetic spectrum. Arrays of nano-sized gold (Au) and silver (Ag) particles with different properties were produced with electron-beam lithography technique over glass substrates. The effect of the particle size, shape variations, period, thickness, metal type, substrate type and sulfidation were studied via transmission and reflectance measurements. The results are compared with the theoretical calculations based on the DDA simulations performed by software developed in this study. We propose a new intensity modulation technique based on localized surface plasmons in nanoparticles with asymmetric shapes.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 147, 145–181 (1857).
    [CrossRef]
  2. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A 203(359-371), 385–420 (1904).
    [CrossRef]
  3. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25(3), 377–445 (1908).
    [CrossRef]
  4. X. Yu-lin, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34(21), 4573–4588 (1995).
    [CrossRef]
  5. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [CrossRef]
  6. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [CrossRef]
  7. B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  8. J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
    [CrossRef] [PubMed]
  9. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  10. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
    [CrossRef]
  11. L. Novotny, and B. Hecht, Principles of nano optics (Cambridge University Press, New York, 2006).
  12. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21(15), 1099–1101 (1996).
    [CrossRef] [PubMed]
  13. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
    [CrossRef]
  14. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [CrossRef]
  15. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
    [CrossRef]
  16. K. Nakayama, K. Tanabe, and H. Atwater, “Surface plasmon enhanced photocurrent in thin GaAs solar cells,” Proc. SPIE 7047, 704708 (2008).
    [CrossRef]
  17. A. K. Pradhan, R. B. Konda, H. Mustafa, R. Mundle, O. Bamiduro, U. N. Roy, Y. Cui, and A. Burger, “Surface plasmon resonance in CdSe semiconductor coated with gold nanoparticles,” Opt. Express 16(9), 6202–6208 (2008).
    [CrossRef] [PubMed]
  18. C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
    [CrossRef]
  19. K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
    [CrossRef]
  20. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [CrossRef]
  21. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [CrossRef]
  22. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
    [CrossRef]
  23. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
    [CrossRef]
  24. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
    [CrossRef] [PubMed]
  25. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
    [CrossRef]
  26. M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, and S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
    [CrossRef]
  27. T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
    [CrossRef]
  28. K. Tanabe, “Optical radiation efficiencies of metal nanoparticles for optoelectronic applications,” Mater. Lett. 61(23-24), 4573–4575 (2007).
    [CrossRef]
  29. H. Garcia, J. Trice, R. Kalyanaraman, and R. Sureshkumar, “Self-consistent determination of plasmonic resonances in ternary nanocomposites,” Phys. Rev. B 75(4), 045439 (2007).
    [CrossRef]
  30. J. P. Kottman, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” N. J. Phys. 2, 27 (2000).
    [CrossRef]
  31. S. Zou and G. C. Schatz, “Generating narrow plasmon resonances from silver nanoparticle arrays: influence of array pattern and particle spacing,” Proc. SPIE 5513, 22–29 (2004).
    [CrossRef]
  32. B. T. Draine, and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.0,” http://arXiv.org/abs/0809.0337 (2008).
  33. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).
    [CrossRef]
  34. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [CrossRef]
  35. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
    [CrossRef] [PubMed]
  36. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
    [CrossRef]
  37. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
    [CrossRef]
  38. A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” N. J. Chem. 30(8), 1121–1132 (2006).
    [CrossRef]
  39. S. J. Norton and T. V. Dinh, “Spectral bounds on plasmon resonances for Ag and Au prolate and oblate nanospheroids,” J. Nanophoton. 2(1), 029501 (2008).
    [CrossRef]
  40. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63, 381–384 (1996).
  41. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [CrossRef]
  42. M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
    [CrossRef] [PubMed]
  43. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
    [CrossRef]
  44. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and T. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  45. J. D. Jackson, Classical Electrodynamics (John Wiley 1998), 3rd ed.
  46. M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80(7), 915–921 (2005).
    [CrossRef]
  47. W. Cao and H. E. Elsayed-Ali, “Stability of Ag nanoparticles fabricated by electron beam lithography,” Mater. Lett. 63(26), 2263–2266 (2009).
    [CrossRef]

2009 (1)

W. Cao and H. E. Elsayed-Ali, “Stability of Ag nanoparticles fabricated by electron beam lithography,” Mater. Lett. 63(26), 2263–2266 (2009).
[CrossRef]

2008 (8)

S. J. Norton and T. V. Dinh, “Spectral bounds on plasmon resonances for Ag and Au prolate and oblate nanospheroids,” J. Nanophoton. 2(1), 029501 (2008).
[CrossRef]

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

K. Nakayama, K. Tanabe, and H. Atwater, “Surface plasmon enhanced photocurrent in thin GaAs solar cells,” Proc. SPIE 7047, 704708 (2008).
[CrossRef]

A. K. Pradhan, R. B. Konda, H. Mustafa, R. Mundle, O. Bamiduro, U. N. Roy, Y. Cui, and A. Burger, “Surface plasmon resonance in CdSe semiconductor coated with gold nanoparticles,” Opt. Express 16(9), 6202–6208 (2008).
[CrossRef] [PubMed]

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H. K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008).
[CrossRef] [PubMed]

2007 (6)

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

K. Tanabe, “Optical radiation efficiencies of metal nanoparticles for optoelectronic applications,” Mater. Lett. 61(23-24), 4573–4575 (2007).
[CrossRef]

H. Garcia, J. Trice, R. Kalyanaraman, and R. Sureshkumar, “Self-consistent determination of plasmonic resonances in ternary nanocomposites,” Phys. Rev. B 75(4), 045439 (2007).
[CrossRef]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[CrossRef]

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[CrossRef]

2006 (6)

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
[CrossRef]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” N. J. Chem. 30(8), 1121–1132 (2006).
[CrossRef]

2005 (6)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80(7), 915–921 (2005).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, and S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Zou and G. C. Schatz, “Generating narrow plasmon resonances from silver nanoparticle arrays: influence of array pattern and particle spacing,” Proc. SPIE 5513, 22–29 (2004).
[CrossRef]

2003 (3)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

2000 (1)

J. P. Kottman, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” N. J. Phys. 2, 27 (2000).
[CrossRef]

1998 (2)

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and T. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1996 (2)

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63, 381–384 (1996).

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21(15), 1099–1101 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

1988 (1)

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25(3), 377–445 (1908).
[CrossRef]

1904 (1)

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A 203(359-371), 385–420 (1904).
[CrossRef]

1857 (1)

M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 147, 145–181 (1857).
[CrossRef]

Agarwal, A.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Atkinson, A. L.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Atwater, H.

K. Nakayama, K. Tanabe, and H. Atwater, “Surface plasmon enhanced photocurrent in thin GaAs solar cells,” Proc. SPIE 7047, 704708 (2008).
[CrossRef]

Atwater, H. A.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
[CrossRef] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

Ausman, L. K.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21(15), 1099–1101 (1996).
[CrossRef] [PubMed]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63, 381–384 (1996).

Bamiduro, O.

Biteen, J. S.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
[CrossRef] [PubMed]

Burger, A.

Cai, W.

Cao, W.

W. Cao and H. E. Elsayed-Ali, “Stability of Ag nanoparticles fabricated by electron beam lithography,” Mater. Lett. 63(26), 2263–2266 (2009).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
[CrossRef]

Chettiar, U. K.

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Corrigan, T. D.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

Cui, Y.

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Dinh, T. V.

S. J. Norton and T. V. Dinh, “Spectral bounds on plasmon resonances for Ag and Au prolate and oblate nanospheroids,” J. Nanophoton. 2(1), 029501 (2008).
[CrossRef]

Drachev, V. P.

Draine, B. T.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[CrossRef]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
[CrossRef]

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Duyne, R. P. V.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and T. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Elsayed-Ali, H. E.

W. Cao and H. E. Elsayed-Ali, “Stability of Ag nanoparticles fabricated by electron beam lithography,” Mater. Lett. 63(26), 2263–2266 (2009).
[CrossRef]

Faraday, M.

M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 147, 145–181 (1857).
[CrossRef]

Feldman, L. C.

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80(7), 915–921 (2005).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Flatau, P. J.

Fujii, M.

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, and S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

Fukushima, M.

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, and S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

Garcia, H.

H. Garcia, J. Trice, R. Kalyanaraman, and R. Sureshkumar, “Self-consistent determination of plasmonic resonances in ternary nanocomposites,” Phys. Rev. B 75(4), 045439 (2007).
[CrossRef]

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A 203(359-371), 385–420 (1904).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and T. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Goettmann, F.

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” N. J. Chem. 30(8), 1121–1132 (2006).
[CrossRef]

Gotschy, W.

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63, 381–384 (1996).

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21(15), 1099–1101 (1996).
[CrossRef] [PubMed]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Guo, S. H.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

Haglund, R. F.

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80(7), 915–921 (2005).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

Hayashi, S.

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, and S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Hoekstra, A. G.

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).
[CrossRef]

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[CrossRef]

Kall, M.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Kalyanaraman, R.

H. Garcia, J. Trice, R. Kalyanaraman, and R. Sureshkumar, “Self-consistent determination of plasmonic resonances in ternary nanocomposites,” Phys. Rev. B 75(4), 045439 (2007).
[CrossRef]

Kasemo, B.

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Kelly, K. L.

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kildishev, A. V.

Koenderink, A. F.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[CrossRef]

Konda, R. B.

Kotov, N.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Kottman, J. P.

J. P. Kottman, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” N. J. Phys. 2, 27 (2000).
[CrossRef]

Leitner, A.

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63, 381–384 (1996).

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21(15), 1099–1101 (1996).
[CrossRef] [PubMed]

Lewis, N. S.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and T. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, S.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Lopez, R.

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80(7), 915–921 (2005).
[CrossRef]

Lumme, K.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

Maltsev, V. P.

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).
[CrossRef]

Managaki, N.

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, and S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

Mansfield, J. F.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Martin, O. J. F.

J. P. Kottman, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” N. J. Phys. 2, 27 (2000).
[CrossRef]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

McMahon, J. M.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

McMahon, M. D.

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80(7), 915–921 (2005).
[CrossRef]

Mertens, H.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[CrossRef]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[CrossRef]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

Meyer, H. M.

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80(7), 915–921 (2005).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25(3), 377–445 (1908).
[CrossRef]

Moores, A.

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” N. J. Chem. 30(8), 1121–1132 (2006).
[CrossRef]

Muinonen, K.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[CrossRef]

Mundle, R.

Mustafa, H.

N’Gom, M.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Nakayama, K.

K. Nakayama, K. Tanabe, and H. Atwater, “Surface plasmon enhanced photocurrent in thin GaAs solar cells,” Proc. SPIE 7047, 704708 (2008).
[CrossRef]

Norris, T. B.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Norton, S. J.

S. J. Norton and T. V. Dinh, “Spectral bounds on plasmon resonances for Ag and Au prolate and oblate nanospheroids,” J. Nanophoton. 2(1), 029501 (2008).
[CrossRef]

Pacifici, D.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
[CrossRef] [PubMed]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Penttila, A.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[CrossRef]

Phaneuf, R. J.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
[CrossRef]

Pinchuk, A. O.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Polman, A.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[CrossRef]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[CrossRef]

Pradhan, A. K.

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Rahola, J.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[CrossRef]

Ringnalda, J.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Roy, U. N.

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Schatz, G. C.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Generating narrow plasmon resonances from silver nanoparticle arrays: influence of array pattern and particle spacing,” Proc. SPIE 5513, 22–29 (2004).
[CrossRef]

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Schultz, S.

J. P. Kottman, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” N. J. Phys. 2, 27 (2000).
[CrossRef]

Shalaev, V. M.

Shkuratov, Y.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[CrossRef]

Smith, D. R.

J. P. Kottman, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” N. J. Phys. 2, 27 (2000).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

Sureshkumar, R.

H. Garcia, J. Trice, R. Kalyanaraman, and R. Sureshkumar, “Self-consistent determination of plasmonic resonances in ternary nanocomposites,” Phys. Rev. B 75(4), 045439 (2007).
[CrossRef]

Szmacinski, H.

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

Tanabe, K.

K. Nakayama, K. Tanabe, and H. Atwater, “Surface plasmon enhanced photocurrent in thin GaAs solar cells,” Proc. SPIE 7047, 704708 (2008).
[CrossRef]

K. Tanabe, “Optical radiation efficiencies of metal nanoparticles for optoelectronic applications,” Mater. Lett. 61(23-24), 4573–4575 (2007).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and T. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Trice, J.

H. Garcia, J. Trice, R. Kalyanaraman, and R. Sureshkumar, “Self-consistent determination of plasmonic resonances in ternary nanocomposites,” Phys. Rev. B 75(4), 045439 (2007).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

Vonmetz, K.

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Optical dichroism of lithographically designed silver nanoparticle films,” Opt. Lett. 21(15), 1099–1101 (1996).
[CrossRef] [PubMed]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63, 381–384 (1996).

Wolff, T. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and T. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Yanagi, H.

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, and S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Yuan, H. K.

Yu-lin, X.

Yurkin, M. A.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

Zaluzec, N. J.

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Zhao, J.

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Zhao, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, “Generating narrow plasmon resonances from silver nanoparticle arrays: influence of array pattern and particle spacing,” Proc. SPIE 5513, 22–29 (2004).
[CrossRef]

Zubko, E.

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[CrossRef]

Acc. Chem. Res. (1)

J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, “Methods for describing the electromagnetic properties of silver and gold nanoparticles,” Acc. Chem. Res. 41(12), 1710–1720 (2008).
[CrossRef] [PubMed]

Ann. Phys. (1)

G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 25(3), 377–445 (1908).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

M. D. McMahon, R. Lopez, H. M. Meyer, L. C. Feldman, and R. F. Haglund., “Rapid tarnishing of silver nanoparticles in ambient laboratory air,” Appl. Phys. B 80(7), 915–921 (2005).
[CrossRef]

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nanodesign,” Appl. Phys. B 63, 381–384 (1996).

Appl. Phys. Lett. (8)

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[CrossRef]

T. D. Corrigan, S. H. Guo, H. Szmacinski, and R. J. Phaneuf, “Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography,” Appl. Phys. Lett. 88(10), 101112 (2006).
[CrossRef]

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73(26), 3815–3817 (1998).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89(9), 093103 (2006).
[CrossRef]

C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[CrossRef]

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett. 89(21), 211107 (2006).
[CrossRef]

Astrophys. J. (2)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by non-spherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

J. Appl. Phys. (4)

K. R. Catchpole and S. Pillai, “Absorption enhancement due to scattering by dipoles into silicon waveguides,” J. Appl. Phys. 100(4), 044504 (2006).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[CrossRef]

M. Fukushima, N. Managaki, M. Fujii, H. Yanagi, and S. Hayashi, “Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping,” J. Appl. Phys. 98(2), 024316 (2005).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[CrossRef]

J. Nanophoton. (1)

S. J. Norton and T. V. Dinh, “Spectral bounds on plasmon resonances for Ag and Au prolate and oblate nanospheroids,” J. Nanophoton. 2(1), 029501 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (3)

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. V. Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (2)

A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 417–436 (2007).
[CrossRef]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 546–557 (2007).
[CrossRef]

Mater. Lett. (2)

K. Tanabe, “Optical radiation efficiencies of metal nanoparticles for optoelectronic applications,” Mater. Lett. 61(23-24), 4573–4575 (2007).
[CrossRef]

W. Cao and H. E. Elsayed-Ali, “Stability of Ag nanoparticles fabricated by electron beam lithography,” Mater. Lett. 63(26), 2263–2266 (2009).
[CrossRef]

N. J. Chem. (1)

A. Moores and F. Goettmann, “The plasmon band in noble metal nanoparticles: an introduction to theory and applications,” N. J. Chem. 30(8), 1121–1132 (2006).
[CrossRef]

N. J. Phys. (1)

J. P. Kottman, O. J. F. Martin, D. R. Smith, and S. Schultz, “Field polarization and polarization charge distributions in plasmon resonant nanoparticles,” N. J. Phys. 2, 27 (2000).
[CrossRef]

Nano Lett. (2)

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
[CrossRef] [PubMed]

M. N’Gom, J. Ringnalda, J. F. Mansfield, A. Agarwal, N. Kotov, N. J. Zaluzec, and T. B. Norris, “Single particle plasmon spectroscopy of silver nanowires and gold nanorods,” Nano Lett. 8(10), 3200–3204 (2008).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and T. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Philos. Trans. R. Soc. Lond. A (1)

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A 203(359-371), 385–420 (1904).
[CrossRef]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

M. Faraday, “Experimental relations of gold (and other metals) to light,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 147, 145–181 (1857).
[CrossRef]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3-4), 131–314 (2005).
[CrossRef]

Phys. Rev. B (2)

H. Garcia, J. Trice, R. Kalyanaraman, and R. Sureshkumar, “Self-consistent determination of plasmonic resonances in ternary nanocomposites,” Phys. Rev. B 75(4), 045439 (2007).
[CrossRef]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76(11), 115123 (2007).
[CrossRef]

Proc. SPIE (2)

K. Nakayama, K. Tanabe, and H. Atwater, “Surface plasmon enhanced photocurrent in thin GaAs solar cells,” Proc. SPIE 7047, 704708 (2008).
[CrossRef]

S. Zou and G. C. Schatz, “Generating narrow plasmon resonances from silver nanoparticle arrays: influence of array pattern and particle spacing,” Proc. SPIE 5513, 22–29 (2004).
[CrossRef]

Other (3)

B. T. Draine, and P. J. Flatau, “User guide for the discrete dipole approximation code DDSCAT 7.0,” http://arXiv.org/abs/0809.0337 (2008).

L. Novotny, and B. Hecht, Principles of nano optics (Cambridge University Press, New York, 2006).

J. D. Jackson, Classical Electrodynamics (John Wiley 1998), 3rd ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

The extinction spectra (1 – T) and SEM images of two samples produced with self assembly (on the left) and electron beam lithography (on the right) methods.

Fig. 2
Fig. 2

The reflectance data of Au nanoparticles patterned over glass substrates w/o an ITO layer (20 nm).

Fig. 3
Fig. 3

Au nanoparticle arrays with a lattice constant of 200 nm patterned over ITO-coated glass. The nanoparticle thicknesses are 20 nm, and diameters vary between 60 and 145 nm.

Fig. 4
Fig. 4

The reflectance spectra of ellipsoidal Au nanoparticles with axes of 80 and 110 nm, with lattice constant of 200 nm over ITO coated glass. Particle array is observed under unpolarized illumination and linear polarizations parallel to short (x-pol) and large (y-pol) axes. The inset gives SEM images of the corresponding ellipsoid nanoparticle array.

Fig. 5
Fig. 5

(a) Reflectance spectra of Au nanoparticle arrays with 300 nm lattice constant and varying dimensions located over ITO coated microscope slide. Ellipsoidal shapes of nanoparticles induce distinct peaks under unpolarized illumination. (b) DDA simulation results for the extinction efficiency of a single Au nanoparticle with 80 and 110 nm axes standing on ITO/Air interface.

Fig. 6
Fig. 6

The reflectance spectra of arrays with the same ellipsoidal nanoparticle sizes, 80-110 nm, but varying lattice constants from 200 to 400 nm, under illumination polarized parallel to the long axis. Increasing the inter-particle distance results in redshift of the peak position and narrowing of the width.

Fig. 7
Fig. 7

(a) The LSPR peaks obtained from ellipsoidal cylinders with axis dimensions increasing from 80 to 120 nm under illumination linearly polarized parallel to the long axis. The peaks are found to be Lorentzian with accuracy better than 99%, illustrating the validity of Lorentz-Drude model to describe real metals. (b) The extinction efficiency of particles located on ITO/air boundary with dimensions of 80, 100 and 120 nm calculated with DDA method.

Fig. 8
Fig. 8

(a) The reflectance spectra of Au nanoparticles with 90 nm diameter and thicknesses of 20 and 30 nm. (b) The extinction efficiencies obtained for the same particles, located on ITO/air boundary, with DDA calculations.

Fig. 9
Fig. 9

The reflectance spectra of 30 nm thick Au nanoparticles with varying diameters. The inset shows the SEM image of Au nanoparticles with sizes around 200 nm.

Fig. 10
Fig. 10

The reflectance spectra of ellipsoidal Au nanoparticles with axis dimensions of 105 and 145 nm, ordered with a lattice constant of 400 nm. The intensity variations depending on the polarization of the incident light (x and y polarized for short and large axes, respectively) are promising for future nano-sized optically switched intensity modulators.

Fig. 11
Fig. 11

(a)The extinction efficiencies calculated by DDA for single Au and Ag nanodisks with a 120 nm size located on ITO-coated glass. (b) The reflectance spectra obtained from Au and Ag nanoparticles with equal dimensions located over ITO coated glass.

Fig. 12
Fig. 12

The reflectance spectra obtained from Au and Ag nanoparticles at different time periods. The Ag peak is altered due to sulfidation. The inset shows the SEM image of Ag nanoparticles taken 30 days after production.

Fig. 13
Fig. 13

(a) The transmittance and (b) reflectance spectra of Ag nanoparticles with varying sizes between 60 and 130 nm. The increased ratio of peaks obtained from the 60 and 130 nm particles in transmittance when compared to reflectance measurements can be attributed to the dominant absorption in Ag particles with 60 nm size. (c) The images of 50 and 80 nm particle arrays taken with an optical microscope with reflected (left image) and transmitted light (right image).

Fig. 14
Fig. 14

Images of Ag nanoparticle arrays taken with an optical microscope with (a) reflected light and (b) transmitted light. The particle sizes decrease from right to left, and lattice constants of the arrays increase from the top to bottom.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C a b s = k ε o Im [ α ( ω ) ]
C s c a = k 4 6 π ε o 2 | α ( ω ) | 2 .
| m | k d 1
N > ( 4 π / 3 ) | m | 3 ( k a e f f ) 3

Metrics