Abstract

A method for simultaneously measuring the refractive index and absorption coefficient of nonlinear optical crystals in the ultra-wideband terahertz (THz) region is described. This method is based on the analysis of a collinear difference frequency generation (DFG) process using a tunable, dual-wavelength, optical parametric oscillator. The refractive index and the absorption coefficient in the organic nonlinear crystal DAST were experimentally determined in the frequency range 2.5–26.2 THz by measuring the THz-wave output using DFG. The resultant refractive index in the x-direction was ~2.3, while the absorption spectrum was in good agreement with FT-IR measurements. The output of the DAST-DFG THz-wave source was optimized to the phase-matching condition using the measured refractive index spectrum in THz region, which resulted in an improvement in the output power of up to a factor of nine.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), 201 (2002).
    [CrossRef]
  2. H. Minamide, T. Ikari, and H. Ito, “Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration,” Rev. Sci. Instrum. 80(12), 123104 (2009).
    [CrossRef]
  3. H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-n-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
    [CrossRef]
  4. K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
    [CrossRef] [PubMed]
  5. K. Miyamoto, S. Ohno, M. Fujiwara, H. Minamide, H. Hashimoto, and H. Ito, “Optimized terahertz-wave generation using BNA-DFG,” Opt. Express 17(17), 14832–14838 (2009).
    [CrossRef] [PubMed]
  6. M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332(3-4), 389–395 (2000).
    [CrossRef]
  7. H. Nakanishi, H. Matsuda, S. Okada, and M. Kato, “Organic polymeric ion-complexes for nonlinear optics”, MRS International Meeting on Advanced Materials Proceedings1, 97 (1989).
  8. U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N-N-dimethylamino-4’-N’- methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83(7), 3486 (1998).
    [CrossRef]
  9. F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro‐optic properties of the organic salt 4‐N,N‐dimethylamino‐4’‐N’‐methyl‐stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13 (1996).
    [CrossRef]
  10. A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23(9), 1822 (2006).
    [CrossRef]
  11. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24(15), 1065–1067 (1999).
    [CrossRef]
  12. T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984 (2004).
    [CrossRef]
  13. M. Ashida, R. Akai, H. Shimosato, I. Katayama, T. Itoh, K. Miyamoto, and H. Ito, “Ultrabroadband THz Field Detection beyond 170THz with a Photoconductive Antenna,” CLEO/QELS( 2008), CTuX6.
  14. M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25(12), 911–913 (2000).
    [CrossRef]
  15. Y. Namba, M. Tsukahara, A. Fushiki, K. Suizu, and H. Ito, “Single-point diamond turning of DAST crystals“, Proceedings of SPIE 5180 Optical Manufacturing and Testing V, 55 (2003)
  16. Terahertz Database, http://www.thzdb.org

2009

H. Minamide, T. Ikari, and H. Ito, “Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration,” Rev. Sci. Instrum. 80(12), 123104 (2009).
[CrossRef]

K. Miyamoto, S. Ohno, M. Fujiwara, H. Minamide, H. Hashimoto, and H. Ito, “Optimized terahertz-wave generation using BNA-DFG,” Opt. Express 17(17), 14832–14838 (2009).
[CrossRef] [PubMed]

2008

2007

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-n-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

2006

2004

T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984 (2004).
[CrossRef]

2002

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), 201 (2002).
[CrossRef]

2000

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332(3-4), 389–395 (2000).
[CrossRef]

M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25(12), 911–913 (2000).
[CrossRef]

1999

1998

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N-N-dimethylamino-4’-N’- methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83(7), 3486 (1998).
[CrossRef]

1996

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro‐optic properties of the organic salt 4‐N,N‐dimethylamino‐4’‐N’‐methyl‐stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13 (1996).
[CrossRef]

Bösch, M.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N-N-dimethylamino-4’-N’- methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83(7), 3486 (1998).
[CrossRef]

Bosshard, C.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N-N-dimethylamino-4’-N’- methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83(7), 3486 (1998).
[CrossRef]

Bosshard, Ch.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro‐optic properties of the organic salt 4‐N,N‐dimethylamino‐4’‐N’‐methyl‐stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13 (1996).
[CrossRef]

Fischer, B.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332(3-4), 389–395 (2000).
[CrossRef]

Follonier, S.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro‐optic properties of the organic salt 4‐N,N‐dimethylamino‐4’‐N’‐methyl‐stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13 (1996).
[CrossRef]

Fujiwara, M.

Günter, P.

A. Schneider, M. Neis, M. Stillhart, B. Ruiz, R. U. A. Khan, and P. Günter, “Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,” J. Opt. Soc. Am. B 23(9), 1822 (2006).
[CrossRef]

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N-N-dimethylamino-4’-N’- methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83(7), 3486 (1998).
[CrossRef]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro‐optic properties of the organic salt 4‐N,N‐dimethylamino‐4’‐N’‐methyl‐stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13 (1996).
[CrossRef]

Hashimoto, H.

Helm, H.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332(3-4), 389–395 (2000).
[CrossRef]

Ikari, T.

H. Minamide, T. Ikari, and H. Ito, “Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration,” Rev. Sci. Instrum. 80(12), 123104 (2009).
[CrossRef]

Ito, H.

Jensby, K.

Kawase, K.

Keiding, S. R.

Khan, R. U. A.

Knöpfle, G.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro‐optic properties of the organic salt 4‐N,N‐dimethylamino‐4’‐N’‐methyl‐stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13 (1996).
[CrossRef]

Meier, U.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N-N-dimethylamino-4’-N’- methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83(7), 3486 (1998).
[CrossRef]

Minamide, H.

Miyamoto, K.

Mizuno, M.

Nakanishi, H.

T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984 (2004).
[CrossRef]

Nawahara, A.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-n-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Neis, M.

Ohno, S.

Okada, S.

T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984 (2004).
[CrossRef]

Pan, F.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N-N-dimethylamino-4’-N’- methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83(7), 3486 (1998).
[CrossRef]

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro‐optic properties of the organic salt 4‐N,N‐dimethylamino‐4’‐N’‐methyl‐stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13 (1996).
[CrossRef]

Ruiz, B.

Sato, T.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-n-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Schall, M.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332(3-4), 389–395 (2000).
[CrossRef]

Schneider, A.

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), 201 (2002).
[CrossRef]

Sohma, S.

Spreiter, R.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro‐optic properties of the organic salt 4‐N,N‐dimethylamino‐4’‐N’‐methyl‐stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13 (1996).
[CrossRef]

Stillhart, M.

Suizu, K.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-n-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Takahashi, H.

Taniuchi, T.

Tashiro, H.

Uhd Jepsen, P.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332(3-4), 389–395 (2000).
[CrossRef]

Urata, Y.

Wada, S.

Walther, M.

M. Walther, K. Jensby, S. R. Keiding, H. Takahashi, and H. Ito, “Far-infrared properties of DAST,” Opt. Lett. 25(12), 911–913 (2000).
[CrossRef]

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332(3-4), 389–395 (2000).
[CrossRef]

Wong, M. S.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro‐optic properties of the organic salt 4‐N,N‐dimethylamino‐4’‐N’‐methyl‐stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13 (1996).
[CrossRef]

Yamashita, T.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-n-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Appl. Phys. Lett.

F. Pan, G. Knöpfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, “Electro‐optic properties of the organic salt 4‐N,N‐dimethylamino‐4’‐N’‐methyl‐stilbazolium tosylate,” Appl. Phys. Lett. 69(1), 13 (1996).
[CrossRef]

Chem. Phys. Lett.

M. Walther, B. Fischer, M. Schall, H. Helm, and P. Uhd Jepsen, “Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy,” Chem. Phys. Lett. 332(3-4), 389–395 (2000).
[CrossRef]

J. Appl. Phys.

U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N-N-dimethylamino-4’-N’- methyl-stilbazolium tosylate at telecommunication wavelengths,” J. Appl. Phys. 83(7), 3486 (1998).
[CrossRef]

T. Taniuchi, S. Okada, and H. Nakanishi, “Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application,” J. Appl. Phys. 95(11), 5984 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D Appl. Phys. 35(3), 201 (2002).
[CrossRef]

Jpn. J. Appl. Phys.

H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-n-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46(11), 7321–7324 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

H. Minamide, T. Ikari, and H. Ito, “Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration,” Rev. Sci. Instrum. 80(12), 123104 (2009).
[CrossRef]

Other

H. Nakanishi, H. Matsuda, S. Okada, and M. Kato, “Organic polymeric ion-complexes for nonlinear optics”, MRS International Meeting on Advanced Materials Proceedings1, 97 (1989).

Y. Namba, M. Tsukahara, A. Fushiki, K. Suizu, and H. Ito, “Single-point diamond turning of DAST crystals“, Proceedings of SPIE 5180 Optical Manufacturing and Testing V, 55 (2003)

Terahertz Database, http://www.thzdb.org

M. Ashida, R. Akai, H. Shimosato, I. Katayama, T. Itoh, K. Miyamoto, and H. Ito, “Ultrabroadband THz Field Detection beyond 170THz with a Photoconductive Antenna,” CLEO/QELS( 2008), CTuX6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used to measure DFG in DAST for arbitrary λa and λb in the range 1260–1760 nm.

Fig. 2
Fig. 2

Output mapping of DFG power. (a) Power was normalized at each frequency (ωa – ωb)/2π . (b) The low-power region caused by the cavity mode of the KTP-OPO was removed

Fig. 3
Fig. 3

An example of the fit at (ωa – ωb) / 2π = 18.9 THz. The red points are THz-wave output experimentally obtained. The green line is a regression curve to Eq. (1).

Fig. 4
Fig. 4

Frequency dependence of the (a) refractive index and (b) absorption along the x-axis in a DAST crystal. Red (Blue) points were obtained from the region in which ωa – ωb was positive (negative). The gray curve in (a) was taken from Ref. 14. In our method, the refractive index can be obtained if the value is within the un-shaded area. The gray curve in (b) was measured using an FT-IR spectrometer.

Fig. 5
Fig. 5

THz output of DAST-DFG as a function of frequency. The red curve shows optimized output for phase matching condition by controlling λ1 and λ2. The gray curve shows the output with λ1 = 1.3 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S = A exp ( α THz L ) 1 + exp ( Δ α L ) 2 exp ( 1 2 Δ α L ) cos ( Δ k L ) ( Δ k L ) 2 + ( 1 2 Δ α L ) 2 ,
Δ k = k 1 k 2 k T H z = 2 π ( n λ 1 λ 1 n λ 2 λ 2 n T H z λ T H z ) ,
Δ α = | α 1 α 2 α T H z | ,

Metrics