Abstract

We report the behavior of two Yb3+ doped ceramics (i.e. 10% at. and 20% at.) under quasi-continuous wave laser pumping. Two different behaviors are found depending on the density of Yb3+ in the excited level. Experimental results show that at low population inversion density, the maximum output power and the efficiency are almost independent on the doping concentration. In particular, an output power as high as 8.9 W with a corresponding slope efficiency of 52% with respect to the injected pump power was reached with the 20% at. sample. Conversely, at high population inversion densities, the 20% doped sample shows a sudden decrease of the laser output for increasing pump power, due to the onset of a nonlinear loss mechanism. Finally, we report a comparison of the experimental results with numerical simulations for the evaluation of the inversion density and of the temperature distribution.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “High-power high-efficiency Yb3+-doped Y3Al5O12 ceramic laser at room temperature,” Jpn. J. Appl. Phys. 47(4), 2149–2151 (2008).
    [CrossRef]
  2. M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb:YLF,” Opt. Express 15(13), 7994–8002 (2007).
    [CrossRef] [PubMed]
  3. A. Pirri, D. Alderighi, G. Toci, M. Vannini, M. Nikl, and H. Sato, “Direct comparison of Yb3+:CaF2 and heavily doped Yb3+:YLF as laser media at room temperature,” Opt. Express 17(20), 18312–18319 (2009).
    [CrossRef] [PubMed]
  4. D. Alderighi, A. Pirri, G. Toci, and M. Vannini, “Tunability enhancement of Yb:YLF based laser,” Opt. Express 18(3), 2236–2241 (2010).
    [CrossRef] [PubMed]
  5. A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
    [CrossRef] [PubMed]
  6. U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
    [CrossRef] [PubMed]
  7. V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
    [CrossRef]
  8. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
    [CrossRef] [PubMed]
  9. J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 24(40), 4303–4307 (2001).
    [CrossRef]
  10. T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
    [CrossRef]
  11. A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
    [CrossRef]
  12. J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanaitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1611161–1611163 (2005).
  13. J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
    [CrossRef] [PubMed]
  14. M. Tokurakawa, A. Shirakawa, K. Ueda, H. Yagi, S. Hosokawa, T. Yanagitani, and A. A. Kaminskii, “Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser,” Opt. Lett. 33(12), 1380–1382 (2008).
    [CrossRef] [PubMed]
  15. A. Pirri, D. Alderighi, G. Toci, and M. Vannini, “High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser,” Opt. Express 17(25), 23344–23349 (2009).
    [CrossRef]
  16. M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 1–3 (2007).
    [CrossRef]
  17. A. Lobad, T. Newell, and W. Latham, 6.5 kW, Yb:YAG ceramic thin disk laser”, presented at the Solid State Lasers XIX: Technology and Devices, San Francisco, CA, USA, 24 January 2010.
  18. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
    [CrossRef] [PubMed]
  19. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009).
    [CrossRef] [PubMed]
  20. M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, ” Nonlinear Decay of the Excited State in Yb:YAG,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49 (2005).
  21. R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
    [CrossRef]
  22. M. Larionov, Kontaktierung und Charakterisierung von Kristallen für Scheibenlaser” (Herbert Utz Verlag, 2009).
  23. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
    [CrossRef] [PubMed]
  24. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
    [CrossRef]
  25. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-Heat High-Power Scaling Using InGaAs-Diode-Pumped Yb:YAG Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
    [CrossRef]
  26. E. C. Honea, R. J. Beach, S. C. Mitchell, and P. V. Avizonis, “183-W, M2 = 2.4 Yb:YAG Q-switched laser,” Opt. Lett. 24(3), 154–156 (1999).
    [CrossRef]
  27. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [CrossRef]
  28. A. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
    [CrossRef]
  29. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
    [CrossRef]
  30. S. Yiou, F. Balembois, and P. George, “Numerical modelling of a continuous-wave Yb_doped bulk crystal laser emitting on a three-level laser transition near 980 nm,” J. Opt. Soc. Am. B 22(3), 572–581 (2005).
    [CrossRef]
  31. S. Fredrich-Thornton, J. Bisson, D. Kouznetsov, K. Ueda, K. Petermann, and G. Huber, “Up-Conversion to the Conduction Band in Highly Doped Yb:YAG and Yb:Y2O3 and Its Effect on Thin-Disk Lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CFJ6. (2007)
  32. U. Wolters, S. T. Fredrich-Thornton, F. Tellkamp, K. Petermann, and G. Huber, “Photoconductivity in Yb-Doped Materials at High Excitation Densities and its Effect on Highly Yb-Doped Thin-Disk Lasers,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CA9_2 (2009).
  33. S. T. Fredrich-Thornton, R. Peters, K. Petermann, and G. Huber, “Degradation of Laser Performance in Yb-Doped Oxide Thin Disk Lasers at High Inversion Densities” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuB18 (2009)

2010

2009

2008

2007

2006

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

2005

S. Yiou, F. Balembois, and P. George, “Numerical modelling of a continuous-wave Yb_doped bulk crystal laser emitting on a three-level laser transition near 980 nm,” J. Opt. Soc. Am. B 22(3), 572–581 (2005).
[CrossRef]

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanaitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1611161–1611163 (2005).

U. Griebner, S. Rivier, V. Petrov, M. Zorn, G. Erbert, M. Weyers, X. Mateos, M. Aguiló, J. Massons, and F. Díaz, “Passively mode-locked Yb:KLu(WO4)2 oscillators,” Opt. Express 13(9), 3465–3470 (2005).
[CrossRef] [PubMed]

2004

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[CrossRef] [PubMed]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

2003

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

2001

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 24(40), 4303–4307 (2001).
[CrossRef]

1999

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

E. C. Honea, R. J. Beach, S. C. Mitchell, and P. V. Avizonis, “183-W, M2 = 2.4 Yb:YAG Q-switched laser,” Opt. Lett. 24(3), 154–156 (1999).
[CrossRef]

1997

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-Heat High-Power Scaling Using InGaAs-Diode-Pumped Yb:YAG Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[CrossRef]

1992

A. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[CrossRef]

Aguiló, M.

Akchurin, M. Sh.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Alderighi, D.

Avizonis, P. V.

Baer, C. R. E.

T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Balembois, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

S. Yiou, F. Balembois, and P. George, “Numerical modelling of a continuous-wave Yb_doped bulk crystal laser emitting on a three-level laser transition near 980 nm,” J. Opt. Soc. Am. B 22(3), 572–581 (2005).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[CrossRef] [PubMed]

Beach, R. J.

Biswal, S.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Bonelli, L.

Braun, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-Heat High-Power Scaling Using InGaAs-Diode-Pumped Yb:YAG Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[CrossRef]

Brunner, F.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-Heat High-Power Scaling Using InGaAs-Diode-Pumped Yb:YAG Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[CrossRef]

Camy, P.

Chan, C. C.

Chen, W.

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 24(40), 4303–4307 (2001).
[CrossRef]

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Coluccelli, N.

Cornacchia, F.

Cousins, A.

A. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[CrossRef]

Debourg, G.

Deng, P.

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 24(40), 4303–4307 (2001).
[CrossRef]

Di Lieto, A.

Díaz, F.

Dong, J.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Laser-diode pumped heavy-doped Yb:YAG ceramic lasers,” Opt. Lett. 32(13), 1890–1892 (2007).
[CrossRef] [PubMed]

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 24(40), 4303–4307 (2001).
[CrossRef]

Doualan, J. L.

Druon, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[CrossRef] [PubMed]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Erbert, G.

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Fredrich-Thornton, S. T.

Gainutdinov, R. V.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Galzerano, G.

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

George, P.

Georges, P.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[CrossRef] [PubMed]

Giesen, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Golling, M.

T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Graf, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Griebner, U.

Heckl, O. H.

T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Honea, E. C.

Hönninger, C.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Hosokawa, S.

Huber, G.

T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Jacquemet, M.

Johannsen, I.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Kaminskii, A. A.

Keller, U.

T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Kisel, V. E.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Kong, J.

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanaitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1611161–1611163 (2005).

Krankel, C.

T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Kränkel, C.

Kühn, H.

Kuleshov, N. V.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Kupchenko, M. I.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Laporta, P.

Liu, Y.

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 24(40), 4303–4307 (2001).
[CrossRef]

Lu, J.

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanaitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1611161–1611163 (2005).

Lucas-Leclin, G.

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

Lucca, A.

Massons, J.

Mateos, X.

Matrosov, V. N.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Matrosova, T. A.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Matsubara, Y.

S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “High-power high-efficiency Yb3+-doped Y3Al5O12 ceramic laser at room temperature,” Jpn. J. Appl. Phys. 47(4), 2149–2151 (2008).
[CrossRef]

Mitchell, S. C.

Moncorgé, R.

Morier-Genoud, F.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Morrier-Genoud, F.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Moser, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Mourou, G. A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Nakamura, S.

H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009).
[CrossRef] [PubMed]

S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “High-power high-efficiency Yb3+-doped Y3Al5O12 ceramic laser at room temperature,” Jpn. J. Appl. Phys. 47(4), 2149–2151 (2008).
[CrossRef]

Nees, J.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Nikl, M.

Ogawa, T.

H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009).
[CrossRef] [PubMed]

S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “High-power high-efficiency Yb3+-doped Y3Al5O12 ceramic laser at room temperature,” Jpn. J. Appl. Phys. 47(4), 2149–2151 (2008).
[CrossRef]

Parisi, D.

Paschotta, R.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Petermann, K.

T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
[CrossRef] [PubMed]

Peters, R.

T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
[CrossRef] [PubMed]

Petrov, V.

Pirri, A.

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-Heat High-Power Scaling Using InGaAs-Diode-Pumped Yb:YAG Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[CrossRef]

Rivier, S.

Roger, J. P.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Saraceno, C. J.

T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Sato, H.

Seeber, W.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Shirakava, A.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Shirakawa, A.

Südmeyer, T.

T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-Heat High-Power Scaling Using InGaAs-Diode-Pumped Yb:YAG Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[CrossRef]

Taira, T.

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 1–3 (2007).
[CrossRef]

Takaichi, K.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

Tang, D. Y.

J. Kong, D. Y. Tang, C. C. Chan, J. Lu, K. Ueda, H. Yagi, and T. Yanagitani, “High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping,” Opt. Lett. 32(3), 247–249 (2007).
[CrossRef] [PubMed]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanaitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1611161–1611163 (2005).

Toci, G.

Tokurakawa, M.

Tolstik, N. A.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Tonelli, M.

Troshin, A. E.

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

Tsunekane, M.

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 1–3 (2007).
[CrossRef]

Ueda, K.

Vannini, M.

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Wada, S.

H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Diode-pumped mode-locked Yb:YAG ceramic laser,” Opt. Express 17(11), 8919–8925 (2009).
[CrossRef] [PubMed]

S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “High-power high-efficiency Yb3+-doped Y3Al5O12 ceramic laser at room temperature,” Jpn. J. Appl. Phys. 47(4), 2149–2151 (2008).
[CrossRef]

Weyers, M.

Xie, X.

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 24(40), 4303–4307 (2001).
[CrossRef]

Xu, J.

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 24(40), 4303–4307 (2001).
[CrossRef]

Yagi, H.

Yanagitani, T.

Yanaitani, T.

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanaitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1611161–1611163 (2005).

Yiou, S.

Yoshioka, H.

Zhang, G.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Zhang, Y.

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 24(40), 4303–4307 (2001).
[CrossRef]

Zhao, B.

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanaitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1611161–1611163 (2005).

Zorn, M.

Appl. Opt.

J. Dong, P. Deng, Y. Liu, Y. Zhang, J. Xu, W. Chen, and X. Xie, “Passively Q-switched Yb:YAG laser with Cr4+:YAG as saturable absorber,” Appl. Opt. 24(40), 4303–4307 (2001).
[CrossRef]

Appl. Phys. B

T. Südmeyer, C. Krankel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100- femtosecond pulse generation,” Appl. Phys. B 97(2), 281–295 (2009).
[CrossRef]

V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morrier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO crystal,” Appl. Phys. B 85(4), 581–584 (2006).
[CrossRef]

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[CrossRef]

Appl. Phys. Lett.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

J. Kong, D. Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, and T. Yanaitani, “9.2-W diode-end-pumped Yb:Y2O3 ceramic laser,” Appl. Phys. Lett. 86(16), 1611161–1611163 (2005).

M. Tsunekane and T. Taira, “High-power operation of diode edge-pumped composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett. 90(12), 1–3 (2007).
[CrossRef]

Crystallogr. Rep.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and Fracture Toughness of Y2O3- and Y3Al5O12-Based Nanocrystalline Laser Ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[CrossRef]

IEEE J. Quantum Electron.

A. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28(4), 1057–1069 (1992).
[CrossRef]

S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal Lensing in Diode-Pumped Ytterbium Lasers—Part I: Theoretical Analysis and Wavefront Measurements,” IEEE J. Quantum Electron. 40(9), 1217–1234 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-Heat High-Power Scaling Using InGaAs-Diode-Pumped Yb:YAG Lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

S. Nakamura, Y. Matsubara, T. Ogawa, and S. Wada, “High-power high-efficiency Yb3+-doped Y3Al5O12 ceramic laser at room temperature,” Jpn. J. Appl. Phys. 47(4), 2149–2151 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Prog. Quantum Electron.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Other

A. Lobad, T. Newell, and W. Latham, 6.5 kW, Yb:YAG ceramic thin disk laser”, presented at the Solid State Lasers XIX: Technology and Devices, San Francisco, CA, USA, 24 January 2010.

M. Larionov, K. Schuhmann, J. Speiser, C. Stolzenburg, and A. Giesen, ” Nonlinear Decay of the Excited State in Yb:YAG,” in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005), paper TuB49 (2005).

S. Fredrich-Thornton, J. Bisson, D. Kouznetsov, K. Ueda, K. Petermann, and G. Huber, “Up-Conversion to the Conduction Band in Highly Doped Yb:YAG and Yb:Y2O3 and Its Effect on Thin-Disk Lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CFJ6. (2007)

U. Wolters, S. T. Fredrich-Thornton, F. Tellkamp, K. Petermann, and G. Huber, “Photoconductivity in Yb-Doped Materials at High Excitation Densities and its Effect on Highly Yb-Doped Thin-Disk Lasers,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CA9_2 (2009).

S. T. Fredrich-Thornton, R. Peters, K. Petermann, and G. Huber, “Degradation of Laser Performance in Yb-Doped Oxide Thin Disk Lasers at High Inversion Densities” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper TuB18 (2009)

M. Larionov, Kontaktierung und Charakterisierung von Kristallen für Scheibenlaser” (Herbert Utz Verlag, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Laser Cavity. EM: End Mirror (flat); FM: Folding Mirror; OC: Output Coupler (flat); The distance between EM and FM is 55 mm; the distance between FM and OC is 190 mm. The FM has a radius of curvature of 100 mm. The inset shows the schematics of the crystal and of the heat sink. The window in the heat sink has a diameter of 2 mm.

Fig. 2
Fig. 2

Laser output power as a function of the pump power Pin obtained with (a) 20% at. sample and (b) 10% at. sample at 1030 nm. TOC is the output couplers transmission. In (c) laser output power at 1050 nm for both samples with TOC=1.5%. (d) Optical-to-optical efficiency calculated from the data of (c).

Fig. 3
Fig. 3

Laser output power in QCW as a function of the pump power obtained by an output coupler with 79% of transmission (for both samples) and 97% transmission (10% sample only). Laser wavelength is 1030 nm.

Fig. 4
Fig. 4

(Color online) Color maps: calculated temperature distribution for the 20% at. doped sample and 10% at. sample. Pump beam impinging from the left side; connection to the heat sink on the right side. The result is calculated at the end of the 40th pump period starting from a uniform temperature distribution at 291 K. Graph: time dependence of the samples temperature during the 40th pump cycle (peak and averaged over a cylinder with 150 μm radius, extending across the whole samples length). Simulation conditions: QCW pumping (10 Hz rep. rate, 20% duty factor), pump peak power: 21.2 W, laser peak output power: 8.2 W (20% at.), 8.9 W (10% at.); TOC=1.5%; λL =1050 nm. Other parameters are: thermal conductivity 6.50 W/(mK)(10% at.) 5.75 W/(mK) (20% at.) [21], heat capacity 2.69×106 J/(m3 K); emission and absorption cross sections at pump and laser wavelengths from [25].

Fig. 5
Fig. 5

Peak temperature and volume averaged temperature for the 10% doped sample (a) and the 20% doped sample (b), for increasing output power. The average temperature was calculated by averaging over a cylinder with 150 μm radius, extending across the whole sample length. The temperature distribution is calculated at the end of the 40th pump period. Other simulation conditions as above.

Tables (1)

Tables Icon

Table 1 Excitation density Nexc of both ceramics calculated for each output coupler mirror at the laser threshold

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

W d i s ( r , z ) = W a b s ( r , z ) [ 1 λ P λ F 1 1 + R ( r , z ) λ P λ L R ( r , z ) 1 + R ( r , z ) ]
R ( r , z ) = λ L τ h c [ σ e ( λ L ) σ a ( λ L ) N 1 ( r , z ) N 2 ( r , z ) ] I L ( r , z )
N 1 ( r , z ) N 2 ( r , z ) = λ L I L ( r , z ) σ e ( λ L ) + λ P I P ( r , z ) σ e ( λ P ) + ( h c / τ ) λ L I L ( r , z ) σ a ( λ L ) + λ P I P ( r , z ) σ a ( λ P )
σ e ( ν , T ) σ a ( ν , T ) = Z 1 ( T ) Z 2 ( T ) exp [ E Z L h ν k T ]

Metrics