Abstract

We demonstrate chip-based Tbaud optical signal processing for all-optical performance monitoring, switching and demultiplexing based on the instantaneous Kerr nonlinearity in a dispersion-engineered As2S3 planar waveguide. At the Tbaud transmitter, we use a THz bandwidth radio-frequency spectrum analyzer to perform all-optical performance monitoring and to optimize the optical time division multiplexing stages as well as mitigate impairments, for example, dispersion. At the Tbaud receiver, we demonstrate error-free demultiplexing of a 1.28 Tbit/s single wavelength, return-to-zero signal to 10 Gbit/s via four-wave mixing with negligible system penalty (< 0.5 dB). Excellent performance, including high four-wave mixing conversion efficiency and no indication of an error-floor, was achieved. Our results establish the feasibility of Tbaud signal processing using compact nonlinear planar waveguides for Tbit/s Ethernet applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
    [CrossRef]
  2. H. Ji, H. Hu, M. Galili, L. K. Oxenløwe, M. Pu, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical Waveform Sampling and Error-free Demultiplexing of 1.28 Tbit/s Serial Data in a Silicon Nanowire,” in Proc. Optical Fiber Communication Conference (OFC), San Diego, USA, 2010 (Postdeadline Paper).
  3. H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
    [CrossRef]
  4. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the Non-Linear Shannon Limit,” J. Lightwave Technol. 28(4), 423–433 (2010).
    [CrossRef]
  5. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
    [CrossRef]
  6. M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640Gbit/s transmission experiment over 60 km using 400fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34(9), 907–908 (1998).
    [CrossRef]
  7. H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
    [CrossRef]
  8. C. Schmidt-Langhorst, R. Ludwig, D.-D. Groß, L. Molle, M. Seimetz, R. Freund, and C. Schubert, “Generation and Coherent Time-Division Demultiplexing of up to 5.1 Tb/s Single-Channel 8-PSK and 16-QAM Signals,” in Proc. Optical Fiber Communication Conference (OFC), San Diego, USA, 2009 (Postdeadline Paper).
  9. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2(1–2), 83–99 (2008).
    [CrossRef]
  10. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [CrossRef]
  11. J. Li, A. Berntson, and G. Jacobsen, “Polarization-Independent Optical Demultiplexing Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber,” IEEE Photon. Technol. Lett. 20(9), 691–693 (2008).
    [CrossRef]
  12. M. Matsumoto, “A Fiber-Based All-Optical 3R Regenerator for DPSK Signals,” IEEE Photon. Technol. Lett. 19(5), 273–275 (2007).
    [CrossRef]
  13. G. T. Zhou, K. Xu, J. Wu, C. Yan, Y. Su, and J. T. Lin, “Self-Pumping Wavelength Conversion for DPSK Signals and DQPSK Generation Through Four-Wave Mixing in Highly Nonlinear Optical Fiber,” IEEE Photon. Technol. Lett. 18(22), 2389–2391 (2006).
    [CrossRef]
  14. M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
    [CrossRef] [PubMed]
  15. L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
    [CrossRef] [PubMed]
  16. R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14(11), 3204–3216 (1997).
    [CrossRef]
  17. E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, H. J. S. Dorren, X. Shu, and I. Bennion, “All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier,” Opt. Lett. 32(7), 835–837 (2007).
    [CrossRef] [PubMed]
  18. L. K. Oxenlwe, F. Gomez, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and P. Jeppesen, “640-Gbit/s Data Transmission and Clock Recovery Using an Ultrafast Periodically Poled Lithium Niobate Device,” J. Lightwave Technol. 27(3), 205–213 (2009).
    [CrossRef]
  19. M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip,” Opt. Express 17(11), 9314–9322 (2009).
    [CrossRef] [PubMed]
  20. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
    [CrossRef]
  21. M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
    [CrossRef]
  22. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
    [CrossRef] [PubMed]
  23. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic Chip Based 1.28 Tbaud Transmitter Optimization and Receiver OTDM Demultiplexing,” in Proc. Optical Fiber Communication Conference (OFC), San Diego, USA, 2010 (Postdeadline Paper).
  24. T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18(4), 3938–3945 (2010).
    [CrossRef] [PubMed]
  25. T. D. Vo, M. D. Pelusi, J. Schröder, B. Corcoran, and B. J. Eggleton, “Multi-Impairment Monitoring at 320 Gb/s based on Cross Phase Modulation Radio-Frequency Spectrum Analyzer,” IEEE Photon. Technol. Lett., (2010).
    [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (California: Academic Press, 2001).
  27. C. Dorrer and D. N. Maywar, “RF Spectrum Analysis of Optical Signals Using Nonlinear Optics,” J. Lightwave Technol. 22(1), 266–274 (2004).
    [CrossRef]
  28. S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
    [CrossRef] [PubMed]
  29. D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Sub-micrometer thick, low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
    [CrossRef]
  30. S. Song, C. T. Allen, K. R. Demarest, and R. Hui, “Intensity-Dependent Phase-Matching Effects on Four-Wave Mixing in Optical Fibers,” J. Lightwave Technol. 17(11), 2285–2290 (1999).
    [CrossRef]
  31. A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
    [CrossRef] [PubMed]
  32. Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
    [CrossRef]
  33. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
    [CrossRef]
  34. S. H. Tao, J. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Improving coupling efficiency of fiber-waveguide coupling with a double-tip coupler,” Opt. Express 16(25), 20803–20808 (2008).
    [CrossRef] [PubMed]

2010

2009

2008

2007

E. Tangdiongga, Y. Liu, H. de Waardt, G. D. Khoe, A. M. J. Koonen, H. J. S. Dorren, X. Shu, and I. Bennion, “All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier,” Opt. Lett. 32(7), 835–837 (2007).
[CrossRef] [PubMed]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

M. Matsumoto, “A Fiber-Based All-Optical 3R Regenerator for DPSK Signals,” IEEE Photon. Technol. Lett. 19(5), 273–275 (2007).
[CrossRef]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

2006

G. T. Zhou, K. Xu, J. Wu, C. Yan, Y. Su, and J. T. Lin, “Self-Pumping Wavelength Conversion for DPSK Signals and DQPSK Generation Through Four-Wave Mixing in Highly Nonlinear Optical Fiber,” IEEE Photon. Technol. Lett. 18(22), 2389–2391 (2006).
[CrossRef]

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

2005

2004

2002

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

2000

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

1999

1998

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640Gbit/s transmission experiment over 60 km using 400fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34(9), 907–908 (1998).
[CrossRef]

1997

1989

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Ackerman, D. A.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Aggarwal, I. D.

Allen, C. T.

Andrekson, P. A.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Bennion, I.

Berntson, A.

J. Li, A. Berntson, and G. Jacobsen, “Polarization-Independent Optical Demultiplexing Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber,” IEEE Photon. Technol. Lett. 20(9), 691–693 (2008).
[CrossRef]

Blow, K. J.

Boerner, C.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Bulla, D. A.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Sub-micrometer thick, low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

Bulla, D. A. P.

Choi, D. Y.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Choi, D.-Y.

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18(4), 3938–3945 (2010).
[CrossRef] [PubMed]

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Sub-micrometer thick, low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip,” Opt. Express 17(11), 9314–9322 (2009).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

Clausen, A. T.

Cotter, D.

de Waardt, H.

Demarest, K. R.

Dorren, H. J. S.

Dorrer, C.

Eggleton, B. J.

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18(4), 3938–3945 (2010).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip,” Opt. Express 17(11), 9314–9322 (2009).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
[CrossRef] [PubMed]

Ellis, A. D.

Erasme, D.

Fang, Q.

Ferber, S.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Fu, L. B.

Futami, F.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Galili, M.

Gomez, F.

Grüner-Nielsen, L.

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[CrossRef]

Hansen Mulvad, H. C.

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[CrossRef]

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Henry, C. H.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Hu, H.

Hui, R.

Ichikawa, J.

Inoue, T.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2(1–2), 83–99 (2008).
[CrossRef]

Jacobsen, G.

J. Li, A. Berntson, and G. Jacobsen, “Polarization-Independent Optical Demultiplexing Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber,” IEEE Photon. Technol. Lett. 20(9), 691–693 (2008).
[CrossRef]

Jensen, J. B.

Jeppesen, P.

Khoe, G. D.

Kistler, R. C.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Koonen, A. M. J.

Kroh, M.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Kurimura, S.

Kwong, D. L.

Lamont, M. R.

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Li, J.

J. Li, A. Berntson, and G. Jacobsen, “Polarization-Independent Optical Demultiplexing Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber,” IEEE Photon. Technol. Lett. 20(9), 691–693 (2008).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Lin, J. T.

G. T. Zhou, K. Xu, J. Wu, C. Yan, Y. Su, and J. T. Lin, “Self-Pumping Wavelength Conversion for DPSK Signals and DQPSK Generation Through Four-Wave Mixing in Highly Nonlinear Optical Fiber,” IEEE Photon. Technol. Lett. 18(22), 2389–2391 (2006).
[CrossRef]

Liu, Y.

Lo, G. Q.

Luan, F.

Ludwig, R.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Luther-Davies, B.

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18(4), 3938–3945 (2010).
[CrossRef] [PubMed]

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Sub-micrometer thick, low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip,” Opt. Express 17(11), 9314–9322 (2009).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Madden, S.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Sub-micrometer thick, low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

Madden, S. J.

Magi, E.

Manning, R. J.

Marembert, V.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Matsumoto, M.

M. Matsumoto, “A Fiber-Based All-Optical 3R Regenerator for DPSK Signals,” IEEE Photon. Technol. Lett. 19(5), 273–275 (2007).
[CrossRef]

Maywar, D. N.

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Moss, D. J.

Mulvad, H. C.

Mulvad, H. C. H.

Nakajima, H.

Nakazawa, M.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640Gbit/s transmission experiment over 60 km using 400fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34(9), 907–908 (1998).
[CrossRef]

Namiki, S.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2(1–2), 83–99 (2008).
[CrossRef]

Orlowsky, K. J.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Oxenløwe, L. K.

Oxenlwe, L. K.

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

Pelusi, M. D.

Peucheret, C.

Poustie, A. J.

Prasad, A.

Rochette, M.

Rode, A.

Rode, A. V.

Sahara, A.

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640Gbit/s transmission experiment over 60 km using 400fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34(9), 907–908 (1998).
[CrossRef]

Sanghera, J. S.

Schmidt-Langhorst, C.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Schröder, J.

Schubert, C.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Shani, Y.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Shaw, L. B.

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Shu, X.

Smith, A.

Song, J.

Song, S.

Su, Y.

G. T. Zhou, K. Xu, J. Wu, C. Yan, Y. Su, and J. T. Lin, “Self-Pumping Wavelength Conversion for DPSK Signals and DQPSK Generation Through Four-Wave Mixing in Highly Nonlinear Optical Fiber,” IEEE Photon. Technol. Lett. 18(22), 2389–2391 (2006).
[CrossRef]

Ta’eed, V. G.

Tamura, K. R.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

Tangdiongga, E.

Tao, S. H.

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Vo, T. D.

Wang, R.

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Sub-micrometer thick, low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

Wang, R.-P.

Ware, C.

Watanabe, S.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Weber, H. G.

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Wu, J.

G. T. Zhou, K. Xu, J. Wu, C. Yan, Y. Su, and J. T. Lin, “Self-Pumping Wavelength Conversion for DPSK Signals and DQPSK Generation Through Four-Wave Mixing in Highly Nonlinear Optical Fiber,” IEEE Photon. Technol. Lett. 18(22), 2389–2391 (2006).
[CrossRef]

Xu, J.

Xu, K.

G. T. Zhou, K. Xu, J. Wu, C. Yan, Y. Su, and J. T. Lin, “Self-Pumping Wavelength Conversion for DPSK Signals and DQPSK Generation Through Four-Wave Mixing in Highly Nonlinear Optical Fiber,” IEEE Photon. Technol. Lett. 18(22), 2389–2391 (2006).
[CrossRef]

Yamada, E.

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640Gbit/s transmission experiment over 60 km using 400fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34(9), 907–908 (1998).
[CrossRef]

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640Gbit/s transmission experiment over 60 km using 400fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34(9), 907–908 (1998).
[CrossRef]

Yan, C.

G. T. Zhou, K. Xu, J. Wu, C. Yan, Y. Su, and J. T. Lin, “Self-Pumping Wavelength Conversion for DPSK Signals and DQPSK Generation Through Four-Wave Mixing in Highly Nonlinear Optical Fiber,” IEEE Photon. Technol. Lett. 18(22), 2389–2391 (2006).
[CrossRef]

Yoshida, E.

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640Gbit/s transmission experiment over 60 km using 400fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34(9), 907–908 (1998).
[CrossRef]

Yu, M. B.

Zha, C.-J.

Zhao, J.

Zhou, G. T.

G. T. Zhou, K. Xu, J. Wu, C. Yan, Y. Su, and J. T. Lin, “Self-Pumping Wavelength Conversion for DPSK Signals and DQPSK Generation Through Four-Wave Mixing in Highly Nonlinear Optical Fiber,” IEEE Photon. Technol. Lett. 18(22), 2389–2391 (2006).
[CrossRef]

Appl. Phys. Lett.

Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, “Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon,” Appl. Phys. Lett. 55(23), 2389–2391 (1989).
[CrossRef]

Electron. Lett.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 um square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000).
[CrossRef]

M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640Gbit/s transmission experiment over 60 km using 400fs pulse train and walk-off free, dispersion flattened nonlinear optical loop mirror,” Electron. Lett. 34(9), 907–908 (1998).
[CrossRef]

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, “Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” Electron. Lett. 42(3), 178–179 (2006).
[CrossRef]

H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280–281 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Li, A. Berntson, and G. Jacobsen, “Polarization-Independent Optical Demultiplexing Using XPM-Induced Wavelength Shifting in Highly Nonlinear Fiber,” IEEE Photon. Technol. Lett. 20(9), 691–693 (2008).
[CrossRef]

M. Matsumoto, “A Fiber-Based All-Optical 3R Regenerator for DPSK Signals,” IEEE Photon. Technol. Lett. 19(5), 273–275 (2007).
[CrossRef]

G. T. Zhou, K. Xu, J. Wu, C. Yan, Y. Su, and J. T. Lin, “Self-Pumping Wavelength Conversion for DPSK Signals and DQPSK Generation Through Four-Wave Mixing in Highly Nonlinear Optical Fiber,” IEEE Photon. Technol. Lett. 18(22), 2389–2391 (2006).
[CrossRef]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-High Nonlinear As2S3 Planar Waveguide for 160-Gb/s Optical Time-Division Demultiplexing by Four-Wave Mixing,” IEEE Photon. Technol. Lett. 19(19), 1496–1498 (2007).
[CrossRef]

D.-Y. Choi, S. Madden, D. A. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Sub-micrometer thick, low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Laser Photon. Rev.

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2(1–2), 83–99 (2008).
[CrossRef]

Nat. Photonics

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Opt. Express

M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip,” Opt. Express 17(11), 9314–9322 (2009).
[CrossRef] [PubMed]

H. C. H. Mulvad, M. Galili, L. K. Oxenløwe, H. Hu, A. T. Clausen, J. B. Jensen, C. Peucheret, and P. Jeppesen, “Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel,” Opt. Express 18(2), 1438–1443 (2010).
[CrossRef]

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18(4), 3938–3945 (2010).
[CrossRef] [PubMed]

L. B. Fu, M. Rochette, V. G. Ta’eed, D. J. Moss, and B. J. Eggleton, “Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 13(19), 7637–7644 (2005).
[CrossRef] [PubMed]

S. J. Madden, D.-Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007).
[CrossRef] [PubMed]

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express 16(15), 11506–11512 (2008).
[CrossRef] [PubMed]

S. H. Tao, J. Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Improving coupling efficiency of fiber-waveguide coupling with a double-tip coupler,” Opt. Express 16(25), 20803–20808 (2008).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Other

H. Ji, H. Hu, M. Galili, L. K. Oxenløwe, M. Pu, K. Yvind, J. M. Hvam, and P. Jeppesen, “Optical Waveform Sampling and Error-free Demultiplexing of 1.28 Tbit/s Serial Data in a Silicon Nanowire,” in Proc. Optical Fiber Communication Conference (OFC), San Diego, USA, 2010 (Postdeadline Paper).

T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic Chip Based 1.28 Tbaud Transmitter Optimization and Receiver OTDM Demultiplexing,” in Proc. Optical Fiber Communication Conference (OFC), San Diego, USA, 2010 (Postdeadline Paper).

T. D. Vo, M. D. Pelusi, J. Schröder, B. Corcoran, and B. J. Eggleton, “Multi-Impairment Monitoring at 320 Gb/s based on Cross Phase Modulation Radio-Frequency Spectrum Analyzer,” IEEE Photon. Technol. Lett., (2010).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (California: Academic Press, 2001).

C. Schmidt-Langhorst, R. Ludwig, D.-D. Groß, L. Molle, M. Seimetz, R. Freund, and C. Schubert, “Generation and Coherent Time-Division Demultiplexing of up to 5.1 Tb/s Single-Channel 8-PSK and 16-QAM Signals,” in Proc. Optical Fiber Communication Conference (OFC), San Diego, USA, 2009 (Postdeadline Paper).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Diagram of Tbaud transmitter optimization and Tbaud receiver OTDM demultipexing. Schematics of (b) cross-phase modulation based RF spectrum analyzer for OPM and MUX optimization at the transmitter and (c) all-optical Tbaud demultiplexing.

Fig. 2
Fig. 2

(a) Optical micrograph image of an As2S3 planar waveguide cleaved facet. Numerical results showing (b) fundamental TM mode intensity profile and (c) group velocity dispersion of TM, TE mode and material dispersion for a 2 µm width planar waveguide.

Fig. 3
Fig. 3

(a) Experimental setup for 1. 28 Tbit/s transmitter. (b) optial performance monitoring for a 1.28 Tbit/s OOK signal for transmitter optimization and (c) 1.28 Tbit/s all-optical demultiplexing by FWM in a ChG planar waveguide.

Fig. 4
Fig. 4

The captured RF spectra showing (a) OTDM MUX misalignment, (b) distortion due to dispersion and (c) optimization of the Tbaud signal. The reconstructed AC waveforms of the (d) un-optimized and (e) optimized 1.28 Tbit/s signal (solid and dotted lines show the AC traces measured from the conventional autocorrelator and reconstructed from the captured RF spectra, respectively).

Fig. 5
Fig. 5

(a) Optical spectra for various cw probe wavelengths, showing a broad FWM bandwidth. (b) Eye diagram and (c) AC trace of a 1.28 Tbit/s signal and AC trace of 10 GHz pulses.

Fig. 6
Fig. 6

(a) Experimental results showing the optical spectra at the input, output of the waveguide and before optical receiver. (b) Numerical result of the optical spectrum at the output of the waveguide.

Fig. 7
Fig. 7

(a) BER measurements and corresponding eye-diagrams of B2B and demultiplexed to 10 Gbit/s signals. (d) Receiver sensitivities at error-free level for demultiplexing of another 35 data channels

Fig. 8
Fig. 8

(a) FWM conversion efficiency as a function of a waveguide length. (b) A function between a wavelength of an input signal and peak power of control pulses.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P idler ( L ) P signal ( 0 ) = η γ 2 P 0 2 e α L ( ( 1 e α L ) 2 α 2 )
η = α 2 α 2 + Δ β 2 ( 1 + 4 e α L sin 2 ( Δ β . L / 2 ) ( 1 e α L ) 2 )
Δ β = 2 π λ 2 c Δ f 2 ( D + λ 2 c . Δ f . S )

Metrics