Abstract

Multi-focus two-photon polymerization with a spatial light modulator is demonstrated. The spatial light modulator generates multi-focus spots via phase modulation technique controlled by a computer generated hologram (CGH) pattern. Each focus spot can be individually addressed in position and laser intensity. The multi-focus two-photon polymerization technique allows the fabrication of complex 2-D and 3-D structures both symmetric and asymmetric. Smooth sine curved polymerized lines with amplitude of 5 μm and a period of 200 μm were obtained by fast switching of the CGH patterns.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
    [CrossRef]
  2. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
    [CrossRef]
  3. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [CrossRef]
  4. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  5. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
    [CrossRef] [PubMed]
  6. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360–4364 (2002).
    [CrossRef] [PubMed]
  7. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  8. H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
    [CrossRef]
  9. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [CrossRef]
  10. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  11. J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
    [CrossRef] [PubMed]
  12. R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14(2), 810–816 (2006).
    [CrossRef] [PubMed]
  13. C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, “Laser-fabricated dielectric optical components for surface plasmon polaritons,” Opt. Lett. 31(9), 1307–1309 (2006).
    [CrossRef] [PubMed]
  14. S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H. A. Kolb, H. Haferkamp, and B. N. Chichkov, “Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique,” J. Biomater. Appl. 22(3), 275–287 (2007).
    [CrossRef] [PubMed]
  15. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
    [CrossRef]
  16. K. Takada, H.-B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerizationbased laser nanowriting,” Appl. Phys. Lett. 86(7), 071122–071124 (2005).
    [CrossRef]
  17. K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106–024108 (2006).
    [CrossRef]
  18. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
    [CrossRef] [PubMed]
  19. J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102–044104 (2005).
    [CrossRef]
  20. Y. Nakata, T. Okada, and M. Maeda, “Nano-Sized Hollow Bump Array Generated by Single Femtosecond Laser Pulse,” Jpn. J. Appl. Phys. 42(Part 2, No. 12A), L1452–L1454 (2003).
    [CrossRef]
  21. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
    [CrossRef]
  22. X. Dong, Z. Zhao, and X. Duan, “Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing,” Appl. Phys. Lett. 91(12), 124103 (2007).
    [CrossRef]
  23. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15(22), 14488–14497 (2007).
    [CrossRef] [PubMed]
  24. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101–031103 (2005).
    [CrossRef]
  25. S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
    [CrossRef] [PubMed]
  26. H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt. 46(23), 5917–5923 (2007).
    [CrossRef] [PubMed]
  27. H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
    [PubMed]
  28. K. Obata, S. Passinger, A. Ostendorf, and B. Chichkov, “Multi-focus system for two-photon polymerization using phase modulated holographic technique,” Proceedings of the International Congress of ICALEO 2007, p. 29–31.
  29. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
    [CrossRef]
  30. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. G. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 225, 6582–6588 (2008).
  31. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel Drawing of Multiple Bent Optical Waveguides Using a Spatial Light Modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
    [CrossRef]
  32. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45(5), 897–903 (2006).
    [CrossRef] [PubMed]
  33. F. Kahlenburg and M. Popall, “ORMOCER®s (Organic-Inorganic Hybrid Polymers) for Telecom Applications: Structure/Property Correlations,” Mater. Res. Soc. Symp. Proc. 847, EE14.4.1–12 (2005).

2009

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel Drawing of Multiple Bent Optical Waveguides Using a Spatial Light Modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[CrossRef]

2008

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[PubMed]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. G. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 225, 6582–6588 (2008).

2007

X. Dong, Z. Zhao, and X. Duan, “Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing,” Appl. Phys. Lett. 91(12), 124103 (2007).
[CrossRef]

S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H. A. Kolb, H. Haferkamp, and B. N. Chichkov, “Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique,” J. Biomater. Appl. 22(3), 275–287 (2007).
[CrossRef] [PubMed]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef]

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

H. Takahashi, S. Hasegawa, and Y. Hayasaki, “Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator,” Appl. Opt. 46(23), 5917–5923 (2007).
[CrossRef] [PubMed]

L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15(22), 14488–14497 (2007).
[CrossRef] [PubMed]

2006

2005

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102–044104 (2005).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101–031103 (2005).
[CrossRef]

K. Takada, H.-B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerizationbased laser nanowriting,” Appl. Phys. Lett. 86(7), 071122–071124 (2005).
[CrossRef]

2004

2003

Y. Nakata, T. Okada, and M. Maeda, “Nano-Sized Hollow Bump Array Generated by Single Femtosecond Laser Pulse,” Jpn. J. Appl. Phys. 42(Part 2, No. 12A), L1452–L1454 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[CrossRef]

2002

2001

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

1999

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

1997

1996

1994

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[CrossRef]

Adachi, Y.

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102–044104 (2005).
[CrossRef]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Barlow, S.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Bozhevolnyi, S. I.

Callan, J. P.

Chen, V. W.

Chichkov, B.

Chichkov, B. N.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef]

S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H. A. Kolb, H. Haferkamp, and B. N. Chichkov, “Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique,” J. Biomater. Appl. 22(3), 275–287 (2007).
[CrossRef] [PubMed]

C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, “Laser-fabricated dielectric optical components for surface plasmon polaritons,” Opt. Lett. 31(9), 1307–1309 (2006).
[CrossRef] [PubMed]

M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360–4364 (2002).
[CrossRef] [PubMed]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Cooper, J.

Courtial, J.

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Davis, K. M.

Dearden, G.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. G. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 225, 6582–6588 (2008).

Dong, W.

Dong, X.

X. Dong, Z. Zhao, and X. Duan, “Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing,” Appl. Phys. Lett. 91(12), 124103 (2007).
[CrossRef]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

Duan, X.

X. Dong, Z. Zhao, and X. Duan, “Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing,” Appl. Phys. Lett. 91(12), 124103 (2007).
[CrossRef]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Edwardson, S.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. G. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 225, 6582–6588 (2008).

Edwardson, S. P.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Fabian, T.

S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H. A. Kolb, H. Haferkamp, and B. N. Chichkov, “Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique,” J. Biomater. Appl. 22(3), 275–287 (2007).
[CrossRef] [PubMed]

Fearon, E.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. G. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 225, 6582–6588 (2008).

Finlay, R. J.

Gibson, G.

Glezer, E. N.

Guo, R.

Haferkamp, H.

S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H. A. Kolb, H. Haferkamp, and B. N. Chichkov, “Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique,” J. Biomater. Appl. 22(3), 275–287 (2007).
[CrossRef] [PubMed]

Hales, J. M.

Hasegawa, S.

Haske, W.

Haverich, A.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef]

Hayasaki, Y.

Heikai, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Her, T.-H.

Hirao, K.

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel Drawing of Multiple Bent Optical Waveguides Using a Spatial Light Modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Huang, L.

Huang, W.

Jarutis, V.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106–024108 (2006).
[CrossRef]

Jordan, P.

Juodkazis, S.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106–024108 (2006).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[CrossRef]

Karunwi, K.

Kato, J.

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102–044104 (2005).
[CrossRef]

Kawata, S.

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102–044104 (2005).
[CrossRef]

K. Takada, H.-B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerizationbased laser nanowriting,” Appl. Phys. Lett. 86(7), 071122–071124 (2005).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

Kelemen, L.

Kolb, H. A.

S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H. A. Kolb, H. Haferkamp, and B. N. Chichkov, “Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique,” J. Biomater. Appl. 22(3), 275–287 (2007).
[CrossRef] [PubMed]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[CrossRef]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

Kuang, Z.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. G. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 225, 6582–6588 (2008).

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Kumagai, H.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[CrossRef]

Laczik, Z. J.

Leach, J.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[CrossRef]

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45(5), 897–903 (2006).
[CrossRef] [PubMed]

Lee, I.-Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Li, J.

Liu, D.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. G. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 225, 6582–6588 (2008).

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

Maeda, M.

Y. Nakata, T. Okada, and M. Maeda, “Nano-Sized Hollow Bump Array Generated by Single Femtosecond Laser Pulse,” Jpn. J. Appl. Phys. 42(Part 2, No. 12A), L1452–L1454 (2003).
[CrossRef]

Marder, S. R.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Marquart, C.

Maruo, S.

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[CrossRef]

Mazur, E.

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Midorikawa, K.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[CrossRef]

Milosavljevic, M.

Misawa, H.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106–024108 (2006).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[CrossRef]

Miura, K.

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel Drawing of Multiple Bent Optical Waveguides Using a Spatial Light Modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Mizeikis, V.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

Nakamura, O.

Nakamura, S.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[CrossRef]

Nakata, Y.

Y. Nakata, T. Okada, and M. Maeda, “Nano-Sized Hollow Bump Array Generated by Single Femtosecond Laser Pulse,” Jpn. J. Appl. Phys. 42(Part 2, No. 12A), L1452–L1454 (2003).
[CrossRef]

Ngezahayo, A.

S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H. A. Kolb, H. Haferkamp, and B. N. Chichkov, “Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique,” J. Biomater. Appl. 22(3), 275–287 (2007).
[CrossRef] [PubMed]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef]

Nishida, N.

S. Hasegawa, Y. Hayasaki, and N. Nishida, “Holographic femtosecond laser processing with multiplexed phase Fresnel lenses,” Opt. Lett. 31(11), 1705–1707 (2006).
[CrossRef] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101–031103 (2005).
[CrossRef]

Nolte, S.

M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360–4364 (2002).
[CrossRef] [PubMed]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Obara, M.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[CrossRef]

Okada, T.

Y. Nakata, T. Okada, and M. Maeda, “Nano-Sized Hollow Bump Array Generated by Single Femtosecond Laser Pulse,” Jpn. J. Appl. Phys. 42(Part 2, No. 12A), L1452–L1454 (2003).
[CrossRef]

Okamoto, T.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[CrossRef]

Ormos, P.

Ovsianikov, A.

S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H. A. Kolb, H. Haferkamp, and B. N. Chichkov, “Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique,” J. Biomater. Appl. 22(3), 275–287 (2007).
[CrossRef] [PubMed]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef]

J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Opt. Express 12(21), 5221–5228 (2004).
[CrossRef] [PubMed]

Padgett, M.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[CrossRef]

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45(5), 897–903 (2006).
[CrossRef] [PubMed]

Passinger, S.

Perrie, W.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. G. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 225, 6582–6588 (2008).

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[CrossRef]

Perry, J. W.

W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Radko, I. P.

Reinhardt, C.

Röckel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Sakakura, M.

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel Drawing of Multiple Bent Optical Waveguides Using a Spatial Light Modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[CrossRef]

Sawano, T.

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel Drawing of Multiple Bent Optical Waveguides Using a Spatial Light Modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[CrossRef]

Schlie, S.

S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H. A. Kolb, H. Haferkamp, and B. N. Chichkov, “Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique,” J. Biomater. Appl. 22(3), 275–287 (2007).
[CrossRef] [PubMed]

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef]

Seet, K. K.

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106–024108 (2006).
[CrossRef]

Serbin, J.

Sharp, M.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. G. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 225, 6582–6588 (2008).

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[CrossRef]

Shimotsuma, Y.

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel Drawing of Multiple Bent Optical Waveguides Using a Spatial Light Modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[CrossRef]

Sinclair, G.

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

Sugimoto, N.

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101–031103 (2005).
[CrossRef]

Sun, H.-B.

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102–044104 (2005).
[CrossRef]

K. Takada, H.-B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerizationbased laser nanowriting,” Appl. Phys. Lett. 86(7), 071122–071124 (2005).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[CrossRef]

Takada, K.

K. Takada, H.-B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerizationbased laser nanowriting,” Appl. Phys. Lett. 86(7), 071122–071124 (2005).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takahashi, H.

Takeyasu, N.

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102–044104 (2005).
[CrossRef]

Takita, A.

H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008).
[PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101–031103 (2005).
[CrossRef]

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Thomson, L.

Toyoda, K.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[CrossRef]

Tünnermann, A.

M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt. 41(21), 4360–4364 (2002).
[CrossRef] [PubMed]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Valkai, S.

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Watkins, K. G.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. G. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 225, 6582–6588 (2008).

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[CrossRef]

Will, M.

Wu, X.-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

Wulff, K.

Xia, A.

Xiao, S.

Zhai, X.

Zhao, Z.

X. Dong, Z. Zhao, and X. Duan, “Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing,” Appl. Phys. Lett. 91(12), 124103 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[CrossRef]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm,” Appl. Phys. Lett. 65(14), 1850–1852 (1994).
[CrossRef]

H.-B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[CrossRef]

K. Takada, H.-B. Sun, and S. Kawata, “Improved spatial resolution and surface roughness in photopolymerizationbased laser nanowriting,” Appl. Phys. Lett. 86(7), 071122–071124 (2005).
[CrossRef]

K. K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, “Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8,” Appl. Phys. Lett. 89(2), 024106–024108 (2006).
[CrossRef]

J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102–044104 (2005).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[CrossRef]

X. Dong, Z. Zhao, and X. Duan, “Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing,” Appl. Phys. Lett. 91(12), 124103 (2007).
[CrossRef]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101–031103 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[CrossRef]

Appl. Surf. Sci.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[CrossRef]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. G. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 225, 6582–6588 (2008).

J. Biomater. Appl.

S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H. A. Kolb, H. Haferkamp, and B. N. Chichkov, “Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique,” J. Biomater. Appl. 22(3), 275–287 (2007).
[CrossRef] [PubMed]

J. Tissue Eng. Regen. Med.

A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, and K. Hirao, “Parallel Drawing of Multiple Bent Optical Waveguides Using a Spatial Light Modulator,” Jpn. J. Appl. Phys. 48(12), 126507 (2009).
[CrossRef]

Y. Nakata, T. Okada, and M. Maeda, “Nano-Sized Hollow Bump Array Generated by Single Femtosecond Laser Pulse,” Jpn. J. Appl. Phys. 42(Part 2, No. 12A), L1452–L1454 (2003).
[CrossRef]

Nature

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikai, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for threedimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[CrossRef]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Other

F. Kahlenburg and M. Popall, “ORMOCER®s (Organic-Inorganic Hybrid Polymers) for Telecom Applications: Structure/Property Correlations,” Mater. Res. Soc. Symp. Proc. 847, EE14.4.1–12 (2005).

K. Obata, S. Passinger, A. Ostendorf, and B. Chichkov, “Multi-focus system for two-photon polymerization using phase modulated holographic technique,” Proceedings of the International Congress of ICALEO 2007, p. 29–31.

Supplementary Material (3)

» Media 1: MOV (970 KB)     
» Media 2: MOV (2800 KB)     
» Media 3: MOV (1024 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for multi-focus two-photon polymerization with a spatial light modulator. Inset: sample preparation.

Fig. 2
Fig. 2

Experimental setup for CGH refresh rate measurement (a) and detected signal (b).

Fig. 3
Fig. 3

Combination of four focus spots (left) and fabricated 2PP line structures (right) (Media 1).

Fig. 4
Fig. 4

Design pattern of a 2-D structure (LZH logo) (a) and SEM images of 2PP structures consisting of lines (Media 2) (b) and dots (c). Both structures are fabricated by four focus spots.

Fig. 5
Fig. 5

SEM images of sine curve structures fabricated with a single focus spot (a) (Media 3), three focus spots (b), and six focus spots (c) at phase shifts of 120° or 60°, respectively.

Fig. 6
Fig. 6

Asymmetric 3-D structures (convex and concave) in design (a) and in realization by parallelized multi-focus production (b).

Fig. 7
Fig. 7

Calculated CGH patterns leading to laser powers of 10 and 30 mW at the sample surface, respectively (a) and a SEM image showing a 2PP line array fabricated at laser powers between 1 and 30 mW (b). The laser power is controlled with different CGHs.

Metrics