Abstract

We propose a simple technique of stopping light pulses using a slow-light device based on photonic crystal coupled waveguide (PCCW). Dynamically tuning the material index chirp in the PCCW adiabatically transforms slow-light pulses into stopped ones. We demonstrate this in finite-difference time-domain simulation assuming ideal and actual tuning of the index chirp. In the ideal case, the group velocity of the almost stopped pulse is reduced to 190 times smaller than that of simple slow light pulse. The smallest limit is affected by the timing error of the tuning between wavelengths. Re-ordering and stopping of a pulse train are possible by optimizing the device length and timing. As a practical tuning method, we discuss carrier effects induced by photo-excitation. Taking into account carrier distribution and free carrier absorption, the actual behaviors of stopped light are estimated. We define and evaluate an effective delay-bandwidth product, which is affected by free carrier absorption.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  2. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  3. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
    [CrossRef]
  4. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16(12), 8395–8405 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8395 .
    [CrossRef] [PubMed]
  5. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  6. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6227 .
    [CrossRef] [PubMed]
  7. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-12-9245 .
    [CrossRef] [PubMed]
  8. T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Sci. Academy Ser. B 85, 443–453 (2009).
    [CrossRef]
  9. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
    [CrossRef]
  10. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
    [CrossRef] [PubMed]
  11. Q. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 101, 169903 (2008).
    [CrossRef]
  12. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
    [CrossRef] [PubMed]
  13. J. Khurgin, “Adiabatically tunable optical delay lines and their performance limitations,” Opt. Lett. 30(20), 2778–2780 (2005).
    [CrossRef] [PubMed]
  14. R. S. Tucker, P.-C. Ku, and C. Chang-Hasnain, “Slow-light optical buffers – capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
    [CrossRef]
  15. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
    [CrossRef] [PubMed]
  16. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406–410 (2007).
    [CrossRef]
  17. L. Yosef Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16(3), 1796–1807 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-3-1796 .
    [CrossRef] [PubMed]
  18. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
    [CrossRef] [PubMed]
  19. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9398 .
    [CrossRef] [PubMed]
  20. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
    [CrossRef] [PubMed]
  21. S. Adachi, Physical properties of III–V semiconductor compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley-VCH, 1992).
  22. B. R. Bennet, R. A. Soref, and J. A. del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
    [CrossRef]
  23. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7506 .
    [CrossRef] [PubMed]
  24. M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption modulator/ DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27, 2138–2140 (1991).
    [CrossRef]

2010 (1)

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

2009 (3)

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Sci. Academy Ser. B 85, 443–453 (2009).
[CrossRef]

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
[CrossRef] [PubMed]

2008 (7)

L. Yosef Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16(3), 1796–1807 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-3-1796 .
[CrossRef] [PubMed]

Q. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 101, 169903 (2008).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6227 .
[CrossRef] [PubMed]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-12-9245 .
[CrossRef] [PubMed]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[CrossRef]

F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16(12), 8395–8405 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8395 .
[CrossRef] [PubMed]

2007 (5)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406–410 (2007).
[CrossRef]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7506 .
[CrossRef] [PubMed]

2005 (4)

2004 (1)

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

1991 (1)

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption modulator/ DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27, 2138–2140 (1991).
[CrossRef]

1990 (1)

B. R. Bennet, R. A. Soref, and J. A. del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[CrossRef]

Adachi, J.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Sci. Academy Ser. B 85, 443–453 (2009).
[CrossRef]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-12-9245 .
[CrossRef] [PubMed]

Aoki, M.

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption modulator/ DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27, 2138–2140 (1991).
[CrossRef]

Asano, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Baba, T.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
[CrossRef] [PubMed]

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Sci. Academy Ser. B 85, 443–453 (2009).
[CrossRef]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-12-9245 .
[CrossRef] [PubMed]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7506 .
[CrossRef] [PubMed]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9398 .
[CrossRef] [PubMed]

Bartoli, F. J.

Q. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 101, 169903 (2008).
[CrossRef]

Bennet, B. R.

B. R. Bennet, R. A. Soref, and J. A. del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[CrossRef]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Chang-Hasnain, C.

Chin, M. K.

del Alamo, J. A.

B. R. Bennet, R. A. Soref, and J. A. del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[CrossRef]

Ding, Y. J.

Q. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 101, 169903 (2008).
[CrossRef]

Dong, P.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406–410 (2007).
[CrossRef]

Fan, S.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

Ferrari, C.

Fu, Z.

Q. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 101, 169903 (2008).
[CrossRef]

Gan, Q. Q.

Q. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 101, 169903 (2008).
[CrossRef]

Gomez-Iglesias, A.

Hamachi, Y.

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Sci. Academy Ser. B 85, 443–453 (2009).
[CrossRef]

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
[CrossRef] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Ishikura, N.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Sci. Academy Ser. B 85, 443–453 (2009).
[CrossRef]

Kawaaski, T.

Kawasaki, T.

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Sci. Academy Ser. B 85, 443–453 (2009).
[CrossRef]

Khurgin, J.

Kita, S.

Krauss, T. F.

Ku, P.-C.

Kubo, S.

Kuramochi, E.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[CrossRef]

Li, J.

Lipson, M.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406–410 (2007).
[CrossRef]

Martinelli, M.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Melloni, A.

Mori, D.

Morichetti, F.

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Noda, S.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Notomi, M.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[CrossRef]

Nozaki, K.

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

O’Faolain, L.

Sano, H.

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption modulator/ DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27, 2138–2140 (1991).
[CrossRef]

Sasaki, H.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Sci. Academy Ser. B 85, 443–453 (2009).
[CrossRef]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-12-9245 .
[CrossRef] [PubMed]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Soref, R. A.

B. R. Bennet, R. A. Soref, and J. A. del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[CrossRef]

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Suzuki, M.

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption modulator/ DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27, 2138–2140 (1991).
[CrossRef]

Takahashi, M.

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption modulator/ DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27, 2138–2140 (1991).
[CrossRef]

Takai, A.

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption modulator/ DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27, 2138–2140 (1991).
[CrossRef]

Tanabe, T.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[CrossRef]

Tanaka, Y.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Taniyama, H.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Tucker, R. S.

Uomi, K.

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption modulator/ DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27, 2138–2140 (1991).
[CrossRef]

Upham, J.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

White, T. P.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Xu, Q.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406–410 (2007).
[CrossRef]

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

Yosef Mario, L.

Electron. Lett. (1)

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption modulator/ DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27, 2138–2140 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. R. Bennet, R. A. Soref, and J. A. del Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum Electron. 26, 113–122 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Sel. Top. Quantum Electron. 16(1), 192–199 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Mater. (1)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Nat. Photonics (3)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008).
[CrossRef]

Nat. Phys. (1)

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406–410 (2007).
[CrossRef]

Nature (2)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6227 .
[CrossRef] [PubMed]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-12-9245 .
[CrossRef] [PubMed]

F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16(12), 8395–8405 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8395 .
[CrossRef] [PubMed]

L. Yosef Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16(3), 1796–1807 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-3-1796 .
[CrossRef] [PubMed]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15(12), 7506–7514 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7506 .
[CrossRef] [PubMed]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13(23), 9398–9408 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-23-9398 .
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (3)

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

Q. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 101, 169903 (2008).
[CrossRef]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

Proc. Jpn. Sci. Academy Ser. B (1)

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Sci. Academy Ser. B 85, 443–453 (2009).
[CrossRef]

Other (1)

S. Adachi, Physical properties of III–V semiconductor compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAsP (Wiley-VCH, 1992).

Supplementary Material (6)

» Media 1: MOV (1441 KB)     
» Media 2: MOV (1637 KB)     
» Media 3: MOV (2325 KB)     
» Media 4: MOV (2291 KB)     
» Media 5: MOV (4241 KB)     
» Media 6: MOV (2151 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Principle of stopping light pulse in chirped PCCW. (a) Structure of PCCW. Dashed lines show the original position of airholes in a triangular lattice. (b) Photonic band diagram. Thick black line shows the band of the even mode. Two white dots on this line indicate the range of flat band. Thick gray region indicate the range of shifted bands due to the initial, fixed chirp. (c) Schematic of dynamic tuning. Pump light is used to form the dynamic chirp.

Fig. 2
Fig. 2

FDTD simulation of dispersion-compensated slow light (a) without and (b)-(d) with dynamic tuning. Here, cΔt d/a = (b) 420, (c) 720, and (d) 1020. Chirped structure is lying at z = 0 − 125a and n eq is constant outside of this area. (e)-(h) Corresponding light propagation of each frequency component estimated from photonic band in Fig. 1(b). Colors indicate different frequencies. Gray region indicates the slow light condition. (i)-(l) Animations corresponding to (a)-(d), respectively. (Media 1) (Media 2) (Media 3) (Media 4)

Fig. 3
Fig. 3

Velocities at three different parts of slow light pulse after dynamic tuning, which is calculated with normalized delay of the tuning against signal light.

Fig. 4
Fig. 4

Re-ordering of pulses demonstrated in FDTD simulation. (a) Profile of input pulses. (b) Time evolution of pulse intensity distribution. (c) Profile of output pulses. (d) (Media 5) Animation corresponding to (b).

Fig. 5
Fig. 5

FDTD simulation of stopping two pulses in three-fold longer PCCW. (a) Light intensity profile. (b) Light propagation of each frequency component estimated from photonic band. (c) (Media 6) Animation corresponding to (a).

Fig. 6
Fig. 6

Schematic of dynamic tuning against two pulses in a two-step chirped structure

Fig. 7
Fig. 7

FDTD simulation of stopped two pulses in two-step chirped PCCW. (a) Light intensity profile for Δn eq = 0.093 and (b) 0.0093.

Fig. 8
Fig. 8

Distributions of photo-excited carrier density, index change by carrier effects, and FCA.

Fig. 9
Fig. 9

FDTD simulation of stopped pulse assuming photo-excited carriers in GaInAsP PCCW. (a) αex = 25, (b) 50, and (c) 100 cm−1.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

( ω ω s ) / Δ ω c = ( z s z ) / L
t ( z ) = 0 z d z υ g ( z ) = L Δ ω c [ k ( ω ) k ( ω s + Δ ω c / 2 ) ]
Δ t s = ( L / ω c ) Δ k
( Δ ω p / Δ ω c ) ( Δ k s / 2 π ) L > 0.44
P ab ( z ) = P ex ( 1 e Γ α ab z )
N ( z ) = τ c d P ab ( z ) / d z ω ex S
Δ n CPD ( z ) = e 2 N ( z ) 2 n ε 0 ω p 2 ( 1 m e * + 1 m h * ) , α FCA ( z ) = e 3 N ( z ) n ε 0 c ω p 2 ( 1 μ e m e *2 + 1 μ h m h *2 )
Δ n eq ' ( z ) n eq [ Γ n + Δ n ( z ) n + ( 1 Γ ) ] n eq = Γ Δ n ( z ) n eq / n
= γ e 2 τ c n eq Γ 2 α ex e Γ α ex z P ex 2 n 2 ε 0 ω ex ω p 2 S ( 1 m e * + 1 m h * )
α eq ( z ) = Γ α FCA ( z ) = e 3 τ c Γ 2 α ex e Γ α ex z P ex n ε 0 c ω ab ω p 2 S ( 1 μ e m e *2 + 1 μ h m h *2 )

Metrics