Abstract

In this paper, the noise performances of 1.5 μm correlated photon pair generation based on spontaneous four wave-mixing in three types of fibers, i.e., dispersion shifted fiber, traditional highly nonlinear fiber and highly nonlinear microstructure fiber are investigated experimentally. Result of the comparison shows that highly nonlinear microstructure fiber has the lowest Raman noise photon generation rate among the three types of fibers while correlated photon pair generation rate is the same. Theoretical analysis indicates that the noise performance is determined by the nonlinear index and Raman response of the material in fiber core. The Raman response rises with increasing doping level, while, for the nonlinear index, the impact of doping level is weak. As a result, highly nonlinear microstructure fiber with pure silica core has the best noise performance and great potential in practical sources of correlated photon pairs and heralded single photons.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
    [CrossRef]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [CrossRef]
  3. S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “““Raman study of the structure of glasses along the join SiO-GeO,” J. Non-Cryst,” Sol. 68, 99 (1984).
  4. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
    [CrossRef]
  5. X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
    [CrossRef] [PubMed]
  6. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
    [CrossRef]
  7. H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
    [CrossRef] [PubMed]
  8. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
    [CrossRef] [PubMed]
  9. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31(12), 1905–1907 (2006).
    [CrossRef] [PubMed]
  10. H. Takesue, “1.5 μm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers,” Appl. Phys. Lett. 90(20), 204101 (2007).
    [CrossRef]
  11. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
    [CrossRef] [PubMed]
  12. X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing,” Opt. Lett. 33(6), 593–595 (2008).
    [CrossRef] [PubMed]
  13. S. D. Dyer, B. Baek, and S. W. Nam, “High-brightness, low-noise, all-fiber photon pair source,” Opt. Express 17(12), 10290–10297 (2009).
    [CrossRef] [PubMed]
  14. L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B Quantum Semiclassical Opt. 3(5), 346–352 (2001).
    [CrossRef]
  15. J. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12(14), 3086–3094 (2004).
    [CrossRef] [PubMed]
  16. J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13(19), 7572–7582 (2005).
    [CrossRef] [PubMed]
  17. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005).
    [CrossRef] [PubMed]
  18. J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30(12), 1530–1532 (2005).
    [CrossRef] [PubMed]
  19. J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30(24), 3368–3370 (2005).
    [CrossRef]
  20. J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled photon pairs,” Opt. Express 15(26), 18339–18344 (2007).
    [CrossRef] [PubMed]
  21. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
    [CrossRef] [PubMed]
  22. J. Fan, A. Migdall, J. Chen, and E. A. Goldschmidt, “Microstructure-fiber-based source of photonic Entanglement,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1724–1732 (2009).
    [CrossRef]
  23. Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled Bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 microm,” Opt. Lett. 34(18), 2706–2708 (2009).
    [CrossRef] [PubMed]
  24. W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D (to be published).
  25. E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79(2), 023840 (2009).
    [CrossRef]
  26. K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
    [CrossRef]
  27. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
    [CrossRef]
  28. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007), Chap. 11.
  29. K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2-andF-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14(4), 492–494 (2002).
    [CrossRef]
  30. S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2-SiO2 Raman fiber amplifier,” IEE Proc., Optoelectron. 136(6), 301 (1989).
    [CrossRef]
  31. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004).
    [CrossRef]

2009 (5)

J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[CrossRef]

J. Fan, A. Migdall, J. Chen, and E. A. Goldschmidt, “Microstructure-fiber-based source of photonic Entanglement,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1724–1732 (2009).
[CrossRef]

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79(2), 023840 (2009).
[CrossRef]

S. D. Dyer, B. Baek, and S. W. Nam, “High-brightness, low-noise, all-fiber photon pair source,” Opt. Express 17(12), 10290–10297 (2009).
[CrossRef] [PubMed]

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled Bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 microm,” Opt. Lett. 34(18), 2706–2708 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (4)

J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled photon pairs,” Opt. Express 15(26), 18339–18344 (2007).
[CrossRef] [PubMed]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

H. Takesue, “1.5 μm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers,” Appl. Phys. Lett. 90(20), 204101 (2007).
[CrossRef]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (6)

2004 (4)

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[CrossRef]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004).
[CrossRef]

J. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12(14), 3086–3094 (2004).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
[CrossRef] [PubMed]

2002 (3)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2-andF-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14(4), 492–494 (2002).
[CrossRef]

2001 (1)

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B Quantum Semiclassical Opt. 3(5), 346–352 (2001).
[CrossRef]

1992 (1)

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[CrossRef]

1989 (1)

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2-SiO2 Raman fiber amplifier,” IEE Proc., Optoelectron. 136(6), 301 (1989).
[CrossRef]

1984 (1)

S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “““Raman study of the structure of glasses along the join SiO-GeO,” J. Non-Cryst,” Sol. 68, 99 (1984).

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Ainslie, B. J.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2-SiO2 Raman fiber amplifier,” IEE Proc., Optoelectron. 136(6), 301 (1989).
[CrossRef]

Alibart, O.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13(19), 7572–7582 (2005).
[CrossRef] [PubMed]

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004).
[CrossRef]

Baek, B.

Baldi, P.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004).
[CrossRef]

Beveratos, A.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004).
[CrossRef]

Brainis, E.

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79(2), 023840 (2009).
[CrossRef]

Chen, J.

Cheng, J.

Cheng, J. R.

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D (to be published).

Cui, L.

Davey, S. T.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2-SiO2 Raman fiber amplifier,” IEE Proc., Optoelectron. 136(6), 301 (1989).
[CrossRef]

Dogariu, A.

Duligall, J.

Dyer, S. D.

Eisaman, M. D.

Fan, J.

Fasel, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004).
[CrossRef]

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
[CrossRef]

Friberg, S. R.

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B Quantum Semiclassical Opt. 3(5), 346–352 (2001).
[CrossRef]

Fulconis, J.

Furusawa, A.

J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[CrossRef]

Gisin, N.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Goldschmidt, E. A.

J. Fan, A. Migdall, J. Chen, and E. A. Goldschmidt, “Microstructure-fiber-based source of photonic Entanglement,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1724–1732 (2009).
[CrossRef]

Hong, C. K.

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B Quantum Semiclassical Opt. 3(5), 346–352 (2001).
[CrossRef]

Huang, Y.

Huang, Y. D.

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D (to be published).

Inoue, K.

H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[CrossRef]

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[CrossRef]

Kumar, P.

Lee, K. F.

Li, X.

Liang, C.

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Matson, D. W.

S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “““Raman study of the structure of glasses along the join SiO-GeO,” J. Non-Cryst,” Sol. 68, 99 (1984).

Migdall, A.

Nakajima, K.

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2-andF-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14(4), 492–494 (2002).
[CrossRef]

Nam, S. W.

O’Brien, J. L.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

O'Brien, J. L.

J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[CrossRef]

Ohashi, M.

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2-andF-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14(4), 492–494 (2002).
[CrossRef]

Ou, Z. Y.

Peng, J.

Peng, J. D.

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D (to be published).

Philpotts, J. A.

S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “““Raman study of the structure of glasses along the join SiO-GeO,” J. Non-Cryst,” Sol. 68, 99 (1984).

Rarity, J. G.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Rothwell, W. J. M.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2-SiO2 Raman fiber amplifier,” IEE Proc., Optoelectron. 136(6), 301 (1989).
[CrossRef]

Roush, T. L.

S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “““Raman study of the structure of glasses along the join SiO-GeO,” J. Non-Cryst,” Sol. 68, 99 (1984).

Russell, P. St. J.

Sharma, S. K.

S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “““Raman study of the structure of glasses along the join SiO-GeO,” J. Non-Cryst,” Sol. 68, 99 (1984).

Sharping, J.

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
[CrossRef]

Stevens, M. J.

Takesue, H.

H. Takesue, “1.5 μm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers,” Appl. Phys. Lett. 90(20), 204101 (2007).
[CrossRef]

H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[CrossRef]

Tanzilli, S.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Voss, P.

Voss, P. L.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31(12), 1905–1907 (2006).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
[CrossRef]

Vuckovic, J.

J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[CrossRef]

Wadsworth, W. J.

Wakefield, B.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2-SiO2 Raman fiber amplifier,” IEE Proc., Optoelectron. 136(6), 301 (1989).
[CrossRef]

Wang, L. J.

Williams, D. L.

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2-SiO2 Raman fiber amplifier,” IEE Proc., Optoelectron. 136(6), 301 (1989).
[CrossRef]

Windeler, R. S.

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

Yang, L.

Yu, D.

Zbinden, H.

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Zhang, W.

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled Bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 microm,” Opt. Lett. 34(18), 2706–2708 (2009).
[CrossRef] [PubMed]

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D (to be published).

Zhou, Q.

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled Bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 microm,” Opt. Lett. 34(18), 2706–2708 (2009).
[CrossRef] [PubMed]

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D (to be published).

Appl. Phys. Lett. (1)

H. Takesue, “1.5 μm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers,” Appl. Phys. Lett. 90(20), 204101 (2007).
[CrossRef]

Eur. Phys. J. D (1)

W. Zhang, Q. Zhou, J. R. Cheng, Y. D. Huang, and J. D. Peng, “Impact of fiber birefringence on correlated photon pair generation in highly nonlinear microstructure fibers,” Eur. Phys. J. D (to be published).

IEE Proc., Optoelectron. (1)

S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2-SiO2 Raman fiber amplifier,” IEE Proc., Optoelectron. 136(6), 301 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Fan, A. Migdall, J. Chen, and E. A. Goldschmidt, “Microstructure-fiber-based source of photonic Entanglement,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1724–1732 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett. 14(7), 983–985 (2002).
[CrossRef]

K. Nakajima and M. Ohashi, “Dopant dependence of effective nonlinear refractive index in GeO2-andF-doped core single-mode fibers,” IEEE Photon. Technol. Lett. 14(4), 492–494 (2002).
[CrossRef]

J. Lightwave Technol. (1)

K. Inoue, “Four-wave mixing in an optical fiber in the zero-dispersion wavelength region,” J. Lightwave Technol. 10(11), 1553–1561 (1992).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

L. J. Wang, C. K. Hong, and S. R. Friberg, “Generation of correlated photons via four-wave mixing in optical fibres,” J. Opt. B Quantum Semiclassical Opt. 3(5), 346–352 (2001).
[CrossRef]

N. J. Phys. (1)

S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High quality asynchronous heralded single-photon source at telecom wavelength,” N. J. Phys. 6, 163 (2004).
[CrossRef]

Nat. Photonics (1)

J. L. O'Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[CrossRef]

Opt. Express (8)

J. Sharping, J. Chen, X. Li, P. Kumar, and R. S. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12(14), 3086–3094 (2004).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
[CrossRef] [PubMed]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. St. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13(2), 534–544 (2005).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. J. Wadsworth, P. St. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13(19), 7572–7582 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
[CrossRef] [PubMed]

J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled photon pairs,” Opt. Express 15(26), 18339–18344 (2007).
[CrossRef] [PubMed]

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16(13), 9966–9977 (2008).
[CrossRef] [PubMed]

S. D. Dyer, B. Baek, and S. W. Nam, “High-brightness, low-noise, all-fiber photon pair source,” Opt. Express 17(12), 10290–10297 (2009).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. A (3)

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70(3), 031802 (2004).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: role of Raman scattering and pump polarization,” Phys. Rev. A 75(2), 023803 (2007).
[CrossRef]

E. Brainis, “Four-photon scattering in birefringent fibers,” Phys. Rev. A 79(2), 023840 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94(5), 053601 (2005).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett. 99(12), 120501 (2007).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Sol. (1)

S. K. Sharma, D. W. Matson, J. A. Philpotts, and T. L. Roush, “““Raman study of the structure of glasses along the join SiO-GeO,” J. Non-Cryst,” Sol. 68, 99 (1984).

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. VOA, variable optical attenuator; P, polarizer; PM, power meter; PC, polarization controller; FBG, fiber Bragg grating; AWG, arrayed waveguide grating; TOBF, tunable optical band-pass filter; PD, photon detector; SPD, single photon detector.

Fig. 2
Fig. 2

Experimental results of correlated photon pair generation and quantum correlation property of the generated photons in DSF. Figure 2 (a), (b) the single side count rates of idler and signal photon, respectively; Fig. 2 (c) the coincident (square dots) and accidental coincident (circular dots) count rates under increasing signal side count rate; Fig. 2 (d) the ratio between coincident and accidental coincident counts under six different signal side wavelengths.

Fig. 3
Fig. 3

R, Rs and Ri under increasing pump level in DSF (Fig. 3 (a)), traditional HNLF (Fig. 3 (b)) and HNMSF (Fig. 3 (c)). The square, circular and triangular dots are experimental results of R, Rs and Ri respectively. The solid line, dashed-dot line and dashed line are the fitting curves of them.

Fig. 4
Fig. 4

The ratio between R and Ri . The circular, square and triangular dots are the ratio in DSF, HNMSF and traditional HNLF, respectively, while the solid, dashed and dashed-dot lines are the fitting curves of them.

Fig. 5
Fig. 5

Correlated photon pair generation rates under different frequency detuning in DSF (Fig. 5 (a)), traditional HNLF (Fig. 5 (b)) and HNMSF (Fig. 5 (c)) with the pump level of 7.2 × 10 7 , 7.16 × 10 7 and 14.5 × 10 7 photon per pulse, respectively.

Fig. 6
Fig. 6

The up-limit of preparation efficiency of fiber based HSPS under 173K. The solid, dashed and dashed-dot lines correspond to the HNMSF, DSF and traditional HNLF, respectively.

Tables (2)

Tables Icon

Table 1 Parameters of three types of fibers used in the experiment

Tables Icon

Table 2 Collection efficiencies for signal and idler photons for three types of fibers in the experiment

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

N s = η s ( R + R s ) + d s , N i = η i ( R + R i ) + d i , N c o = η s η i ( R + R R s + R R i + R s R i ) + η s ( R + R s ) d i + η i ( R + R i ) d s , N a c = η s η i ( R 2 + R R s + R R i + R s R i ) + η s ( R + R s ) d i + η i ( R + R i ) d s .
ξ c ( Ω ) = | γ P 0 L | 2 sin c 2 [ ( Σ m = 1 + ( 2 β 2 m ( 2 m ) ! Ω 2 m ) + 2 γ P 0 ) L 2 ] , ξ i ( Ω ) = P 0 L g R ( Ω ) [ exp ( | Ω | / k B T ) 1 ] 1 , ξ s ( Ω ) = P 0 L g R ( Ω ) [ ( exp ( | Ω | / k B T ) 1 ) 1 + 1 ] .
κ ( Ω ) | Ω = 0.3 T H z = R R i | Ω = 0.3 T H z = γ R g R ( Ω ) [ exp ( | Ω | / k B T ) 1 ] 1 Δ ν τ | Ω = 0.3 T H z .

Metrics