Abstract

We have experimentally developed a highly sensitive and a compact size current sensor by using the CdSe quantum dots-doped bend insensitive optical fiber, operating in the visible band of wavelength. The modified sensitivity of this sensor was about 675 μrad/(Turn.A.m) for the loop radius of just 10 mm, which is more than 16 times larger than that of the single mode optical fiber current sensor.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(7), 1989–1995 (1998).
    [CrossRef]
  2. M. W. Shafer and J. C. Suits, “Preparation and Faraday rotation of divalent europium glasses,” J. Am. Ceram. Soc. 49(5), 261–264 (1966).
    [CrossRef]
  3. J. T. Kohli and J. E. Shelby, “Magneto-optical properties of rare earth aluminosilicate glasses,” Phys. Chem. Glasses 32, 109–114 (1991).
  4. J. F. Owen, P. B. Dorain, and T. Kobayasi, “Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K,” J. Appl. Phys. 52(3), 1216–1223 (1981).
    [CrossRef]
  5. T. Sato and I. Sone, “Development of bulk-optic current sensor using glass ring type Faraday cells,” Opt. Rev. 4(1), 35–37 (1997).
    [CrossRef]
  6. G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” IEEE J. Lightwave Technol. 15(12), 2246–2252 (1997).
    [CrossRef]
  7. T. D. Maffetone and T. M. McClelland, “345 kV substation optical current measurement system for revenue metering and protective relaying,” IEEE Trans. Power Deliv. 6(4), 1430–1437 (1991).
    [CrossRef]
  8. C. D. Perciante and J. A. Ferrari, “Faraday current sensor with temperature monitoring,” Appl. Opt. 44(32), 6910–6912 (2005).
    [CrossRef] [PubMed]
  9. J. C. Yong, S. H. Yun, M. L. Lee, and B. Y. Kim, “Frequency-division-multiplexed polarimetric fiber laser current-sensor array,” Opt. Lett. 24(16), 1097–1099 (1999).
    [CrossRef]
  10. A. H. Rose, S. M. Etzel, and K. B. Rochford, “Optical fiber current sensors in high electric field environments,” IEEE J. Lightwave Technol. 17(6), 1042–1048 (1999).
    [CrossRef]
  11. M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, “Faraday rotation in a single-mode fiber with controlled birefringence,” Appl. Phys. B 35(3), 145–148 (1984).
    [CrossRef]
  12. D. H. Kim, H. Y. Yang, B. H. Kim, U. C. Paek, and W.-T. Han, in Proceedings of Opto-Electronics and Communications Conference (OECC/COIN 2004), Yokohama Japan (2004), p.512.
  13. P. R. Watekar, H. Yang, S. Ju, and W.-T. Han, “Enhanced current sensitivity in the optical fiber doped with CdSe quantum dots,” Opt. Express 17(5), 3157–3164 (2009).
    [CrossRef] [PubMed]
  14. K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” IEEE J. Lightwave Technol. 13(7), 1378–1384 (1995).
    [CrossRef]
  15. K. Kurosawa, I. Masuda, and T. Yamashita, “Faraday effect current sensor using flint glass fiber for the sensing element,” in Proceedings of Optical Fiber Sensor Conference, Florence, USA (1993), pp. 415–418.
  16. S. Matsuo, M. Ikeda, and K. Himeno, “Bend insensitive and low splice loss optical fiber for indoor wiring in FTTH,” in Proceedings of Optical Fiber Communication Conference (OFC), Anaheim, USA, Feb.23–27,2004 (Optical Society of America, Technical Digest, 2004), Paper number: ThI3.
  17. M.-J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low bending loss single-mode fiber for FTTH,” in Proceedings of OFC/NFOEC-2008, San Diego, USA, Feb.24–28,2008 (Optical Society of America, Technical Digest, 2008), Paper number: PDP10.
  18. I. Sakabe, H. Ishikawa, H. Tanji, Y. Terasawa, M. Ito, and T. Ueda, “Enhanced bending loss insensitive fiber and new cables for CWDM access networks,” in Proceeding of 53rd International Wire and Cable Symposium, Philadelphia, USA, November 14–17 (2004), pp. 112–118.
  19. K. Himeno, S. Matsuo, N. Guan, and A. Wada, “Low bending loss single mode fibers for Fiber-to-the-Home,” IEEE J. Lightwave Technol. 23(11), 3494–3499 (2005).
    [CrossRef]
  20. P. R. Watekar, S. Ju, and W.-T. Han, “Bend insensitive optical fiber with ultralow bending loss in the visible wavelength band,” Opt. Lett. 34(24), 3830–3832 (2009).
    [CrossRef] [PubMed]
  21. P. R. Watekar, S. Ju, and W.-T. Han, “Near zero bending loss in a double-trenched bend insensitive optical fiber at 1550 nm,” Opt. Express 17(22), 20155–20166 (2009).
    [CrossRef] [PubMed]
  22. P. R. Watekar, S. Ju, and W.-T. Han, “Design and development of a trenched optical fiber with ultra-low bending loss,” Opt. Express 17(12), 10350–10363 (2009).
    [CrossRef] [PubMed]
  23. C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
    [CrossRef]
  24. J. H. Kratzer and J. Schroeder, “Magnetooptic properties of semiconductor quantum dots in glass composition,” J. Non-Cryst. Solids 349, 299–308 (2004).
    [CrossRef]
  25. A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20(17), 2962–2968 (1981).
    [CrossRef] [PubMed]
  26. M. Legre, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single mode fibers,” IEEE J. Lightwave Technol. 21(12), 3374–3378 (2003).
    [CrossRef]
  27. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Measurements of beat length and perturbation length in long single-mode fibers,” Opt. Lett. 25(6), 384–386 (2000).
    [CrossRef]
  28. Samsung bend insensitive optical fiber data-sheets (2010).
  29. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
    [CrossRef] [PubMed]
  30. P. R. Forman and F. C. Jahoda, “Linear birefringence effects on fiber-optic current sensors,” Appl. Opt. 27(15), 3088–3096 (1988).
    [CrossRef] [PubMed]
  31. A. Ghatak, and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, USA, 1998).
  32. D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single mode fiber coils: application to optical fiber current sensors,” IEEE J. Lightwave Technol. 9(8), 1031–1037 (1991).
    [CrossRef]
  33. R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fiber,” IEEE J. Lightwave Technol. 7(12), 2084–2094 (1989).
    [CrossRef]

2009 (4)

2005 (2)

C. D. Perciante and J. A. Ferrari, “Faraday current sensor with temperature monitoring,” Appl. Opt. 44(32), 6910–6912 (2005).
[CrossRef] [PubMed]

K. Himeno, S. Matsuo, N. Guan, and A. Wada, “Low bending loss single mode fibers for Fiber-to-the-Home,” IEEE J. Lightwave Technol. 23(11), 3494–3499 (2005).
[CrossRef]

2004 (1)

J. H. Kratzer and J. Schroeder, “Magnetooptic properties of semiconductor quantum dots in glass composition,” J. Non-Cryst. Solids 349, 299–308 (2004).
[CrossRef]

2003 (1)

M. Legre, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single mode fibers,” IEEE J. Lightwave Technol. 21(12), 3374–3378 (2003).
[CrossRef]

2002 (1)

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
[CrossRef]

2000 (1)

1999 (2)

J. C. Yong, S. H. Yun, M. L. Lee, and B. Y. Kim, “Frequency-division-multiplexed polarimetric fiber laser current-sensor array,” Opt. Lett. 24(16), 1097–1099 (1999).
[CrossRef]

A. H. Rose, S. M. Etzel, and K. B. Rochford, “Optical fiber current sensors in high electric field environments,” IEEE J. Lightwave Technol. 17(6), 1042–1048 (1999).
[CrossRef]

1998 (1)

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(7), 1989–1995 (1998).
[CrossRef]

1997 (2)

T. Sato and I. Sone, “Development of bulk-optic current sensor using glass ring type Faraday cells,” Opt. Rev. 4(1), 35–37 (1997).
[CrossRef]

G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” IEEE J. Lightwave Technol. 15(12), 2246–2252 (1997).
[CrossRef]

1995 (1)

K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” IEEE J. Lightwave Technol. 13(7), 1378–1384 (1995).
[CrossRef]

1991 (3)

T. D. Maffetone and T. M. McClelland, “345 kV substation optical current measurement system for revenue metering and protective relaying,” IEEE Trans. Power Deliv. 6(4), 1430–1437 (1991).
[CrossRef]

J. T. Kohli and J. E. Shelby, “Magneto-optical properties of rare earth aluminosilicate glasses,” Phys. Chem. Glasses 32, 109–114 (1991).

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single mode fiber coils: application to optical fiber current sensors,” IEEE J. Lightwave Technol. 9(8), 1031–1037 (1991).
[CrossRef]

1989 (1)

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fiber,” IEEE J. Lightwave Technol. 7(12), 2084–2094 (1989).
[CrossRef]

1988 (1)

1984 (1)

M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, “Faraday rotation in a single-mode fiber with controlled birefringence,” Appl. Phys. B 35(3), 145–148 (1984).
[CrossRef]

1981 (2)

J. F. Owen, P. B. Dorain, and T. Kobayasi, “Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K,” J. Appl. Phys. 52(3), 1216–1223 (1981).
[CrossRef]

A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20(17), 2962–2968 (1981).
[CrossRef] [PubMed]

1980 (1)

1966 (1)

M. W. Shafer and J. C. Suits, “Preparation and Faraday rotation of divalent europium glasses,” J. Am. Ceram. Soc. 49(5), 261–264 (1966).
[CrossRef]

Barlow, A. J.

Bawendi, M. G.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
[CrossRef]

Day, G. W.

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single mode fiber coils: application to optical fiber current sensors,” IEEE J. Lightwave Technol. 9(8), 1031–1037 (1991).
[CrossRef]

Dorain, P. B.

J. F. Owen, P. B. Dorain, and T. Kobayasi, “Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K,” J. Appl. Phys. 52(3), 1216–1223 (1981).
[CrossRef]

Eickhoff, W.

Etzel, S. M.

A. H. Rose, S. M. Etzel, and K. B. Rochford, “Optical fiber current sensors in high electric field environments,” IEEE J. Lightwave Technol. 17(6), 1042–1048 (1999).
[CrossRef]

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single mode fiber coils: application to optical fiber current sensors,” IEEE J. Lightwave Technol. 9(8), 1031–1037 (1991).
[CrossRef]

Ferrari, J. A.

Forman, P. R.

Fujita, K.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(7), 1989–1995 (1998).
[CrossRef]

Galtarossa, A.

Gisin, N.

M. Legre, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single mode fibers,” IEEE J. Lightwave Technol. 21(12), 3374–3378 (2003).
[CrossRef]

Grexa, M.

M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, “Faraday rotation in a single-mode fiber with controlled birefringence,” Appl. Phys. B 35(3), 145–148 (1984).
[CrossRef]

Guan, N.

K. Himeno, S. Matsuo, N. Guan, and A. Wada, “Low bending loss single mode fibers for Fiber-to-the-Home,” IEEE J. Lightwave Technol. 23(11), 3494–3499 (2005).
[CrossRef]

Han, W.-T.

Hermann, G.

M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, “Faraday rotation in a single-mode fiber with controlled birefringence,” Appl. Phys. B 35(3), 145–148 (1984).
[CrossRef]

Himeno, K.

K. Himeno, S. Matsuo, N. Guan, and A. Wada, “Low bending loss single mode fibers for Fiber-to-the-Home,” IEEE J. Lightwave Technol. 23(11), 3494–3499 (2005).
[CrossRef]

Hirao, K.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(7), 1989–1995 (1998).
[CrossRef]

Jahoda, F. C.

Jones, G. R.

G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” IEEE J. Lightwave Technol. 15(12), 2246–2252 (1997).
[CrossRef]

Ju, S.

Kim, B. Y.

Kobayasi, T.

J. F. Owen, P. B. Dorain, and T. Kobayasi, “Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K,” J. Appl. Phys. 52(3), 1216–1223 (1981).
[CrossRef]

Kohli, J. T.

J. T. Kohli and J. E. Shelby, “Magneto-optical properties of rare earth aluminosilicate glasses,” Phys. Chem. Glasses 32, 109–114 (1991).

Kong, M. G.

G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” IEEE J. Lightwave Technol. 15(12), 2246–2252 (1997).
[CrossRef]

Kratzer, J. H.

J. H. Kratzer and J. Schroeder, “Magnetooptic properties of semiconductor quantum dots in glass composition,” J. Non-Cryst. Solids 349, 299–308 (2004).
[CrossRef]

Kurosawa, K.

K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” IEEE J. Lightwave Technol. 13(7), 1378–1384 (1995).
[CrossRef]

Laming, R. I.

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fiber,” IEEE J. Lightwave Technol. 7(12), 2084–2094 (1989).
[CrossRef]

Lasnitschka, G.

M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, “Faraday rotation in a single-mode fiber with controlled birefringence,” Appl. Phys. B 35(3), 145–148 (1984).
[CrossRef]

Leatherdale, C. A.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
[CrossRef]

Lee, M. L.

Legre, M.

M. Legre, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single mode fibers,” IEEE J. Lightwave Technol. 21(12), 3374–3378 (2003).
[CrossRef]

Li, G.

G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” IEEE J. Lightwave Technol. 15(12), 2246–2252 (1997).
[CrossRef]

Maffetone, T. D.

T. D. Maffetone and T. M. McClelland, “345 kV substation optical current measurement system for revenue metering and protective relaying,” IEEE Trans. Power Deliv. 6(4), 1430–1437 (1991).
[CrossRef]

Matsuo, S.

K. Himeno, S. Matsuo, N. Guan, and A. Wada, “Low bending loss single mode fibers for Fiber-to-the-Home,” IEEE J. Lightwave Technol. 23(11), 3494–3499 (2005).
[CrossRef]

Matsuoka, N.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(7), 1989–1995 (1998).
[CrossRef]

McClelland, T. M.

T. D. Maffetone and T. M. McClelland, “345 kV substation optical current measurement system for revenue metering and protective relaying,” IEEE Trans. Power Deliv. 6(4), 1430–1437 (1991).
[CrossRef]

Mikulec, F. V.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
[CrossRef]

Owen, J. F.

J. F. Owen, P. B. Dorain, and T. Kobayasi, “Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K,” J. Appl. Phys. 52(3), 1216–1223 (1981).
[CrossRef]

Palmieri, L.

Payne, D. N.

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fiber,” IEEE J. Lightwave Technol. 7(12), 2084–2094 (1989).
[CrossRef]

A. J. Barlow, J. J. Ramskov-Hansen, and D. N. Payne, “Birefringence and polarization mode-dispersion in spun single-mode fibers,” Appl. Opt. 20(17), 2962–2968 (1981).
[CrossRef] [PubMed]

Perciante, C. D.

Ramskov-Hansen, J. J.

Rashleigh, S. C.

Rochford, K. B.

A. H. Rose, S. M. Etzel, and K. B. Rochford, “Optical fiber current sensors in high electric field environments,” IEEE J. Lightwave Technol. 17(6), 1042–1048 (1999).
[CrossRef]

Rose, A. H.

A. H. Rose, S. M. Etzel, and K. B. Rochford, “Optical fiber current sensors in high electric field environments,” IEEE J. Lightwave Technol. 17(6), 1042–1048 (1999).
[CrossRef]

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single mode fiber coils: application to optical fiber current sensors,” IEEE J. Lightwave Technol. 9(8), 1031–1037 (1991).
[CrossRef]

Sakamoto, K.

K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” IEEE J. Lightwave Technol. 13(7), 1378–1384 (1995).
[CrossRef]

Sato, T.

T. Sato and I. Sone, “Development of bulk-optic current sensor using glass ring type Faraday cells,” Opt. Rev. 4(1), 35–37 (1997).
[CrossRef]

Scharmann, A.

M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, “Faraday rotation in a single-mode fiber with controlled birefringence,” Appl. Phys. B 35(3), 145–148 (1984).
[CrossRef]

Schiano, M.

Schroeder, J.

J. H. Kratzer and J. Schroeder, “Magnetooptic properties of semiconductor quantum dots in glass composition,” J. Non-Cryst. Solids 349, 299–308 (2004).
[CrossRef]

Shafer, M. W.

M. W. Shafer and J. C. Suits, “Preparation and Faraday rotation of divalent europium glasses,” J. Am. Ceram. Soc. 49(5), 261–264 (1966).
[CrossRef]

Shelby, J. E.

J. T. Kohli and J. E. Shelby, “Magneto-optical properties of rare earth aluminosilicate glasses,” Phys. Chem. Glasses 32, 109–114 (1991).

Soga, N.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(7), 1989–1995 (1998).
[CrossRef]

Sone, I.

T. Sato and I. Sone, “Development of bulk-optic current sensor using glass ring type Faraday cells,” Opt. Rev. 4(1), 35–37 (1997).
[CrossRef]

Spencer, J. W.

G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” IEEE J. Lightwave Technol. 15(12), 2246–2252 (1997).
[CrossRef]

Suits, J. C.

M. W. Shafer and J. C. Suits, “Preparation and Faraday rotation of divalent europium glasses,” J. Am. Ceram. Soc. 49(5), 261–264 (1966).
[CrossRef]

Tambosso, T.

Tanaka, K.

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(7), 1989–1995 (1998).
[CrossRef]

Tang, D.

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single mode fiber coils: application to optical fiber current sensors,” IEEE J. Lightwave Technol. 9(8), 1031–1037 (1991).
[CrossRef]

Ulrich, R.

Wada, A.

K. Himeno, S. Matsuo, N. Guan, and A. Wada, “Low bending loss single mode fibers for Fiber-to-the-Home,” IEEE J. Lightwave Technol. 23(11), 3494–3499 (2005).
[CrossRef]

Watekar, P. R.

Wegmuller, M.

M. Legre, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single mode fibers,” IEEE J. Lightwave Technol. 21(12), 3374–3378 (2003).
[CrossRef]

Woo, W.-K.

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
[CrossRef]

Yang, H.

Yong, J. C.

Yoshida, S.

K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” IEEE J. Lightwave Technol. 13(7), 1378–1384 (1995).
[CrossRef]

Yun, S. H.

Appl. Opt. (3)

Appl. Phys. B (1)

M. Grexa, G. Hermann, G. Lasnitschka, and A. Scharmann, “Faraday rotation in a single-mode fiber with controlled birefringence,” Appl. Phys. B 35(3), 145–148 (1984).
[CrossRef]

IEEE J. Lightwave Technol. (7)

A. H. Rose, S. M. Etzel, and K. B. Rochford, “Optical fiber current sensors in high electric field environments,” IEEE J. Lightwave Technol. 17(6), 1042–1048 (1999).
[CrossRef]

K. Kurosawa, S. Yoshida, and K. Sakamoto, “Polarization properties of the flint glass fiber,” IEEE J. Lightwave Technol. 13(7), 1378–1384 (1995).
[CrossRef]

G. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” IEEE J. Lightwave Technol. 15(12), 2246–2252 (1997).
[CrossRef]

D. Tang, A. H. Rose, G. W. Day, and S. M. Etzel, “Annealing of linear birefringence in single mode fiber coils: application to optical fiber current sensors,” IEEE J. Lightwave Technol. 9(8), 1031–1037 (1991).
[CrossRef]

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fiber,” IEEE J. Lightwave Technol. 7(12), 2084–2094 (1989).
[CrossRef]

M. Legre, M. Wegmuller, and N. Gisin, “Investigation of the ratio between phase and group birefringence in optical single mode fibers,” IEEE J. Lightwave Technol. 21(12), 3374–3378 (2003).
[CrossRef]

K. Himeno, S. Matsuo, N. Guan, and A. Wada, “Low bending loss single mode fibers for Fiber-to-the-Home,” IEEE J. Lightwave Technol. 23(11), 3494–3499 (2005).
[CrossRef]

IEEE Trans. Power Deliv. (1)

T. D. Maffetone and T. M. McClelland, “345 kV substation optical current measurement system for revenue metering and protective relaying,” IEEE Trans. Power Deliv. 6(4), 1430–1437 (1991).
[CrossRef]

J. Am. Ceram. Soc. (1)

M. W. Shafer and J. C. Suits, “Preparation and Faraday rotation of divalent europium glasses,” J. Am. Ceram. Soc. 49(5), 261–264 (1966).
[CrossRef]

J. Appl. Phys. (1)

J. F. Owen, P. B. Dorain, and T. Kobayasi, “Excited-state absorption in Eu+2:CaF2 and Ce+3: YAG single crystals at 298 and 77K,” J. Appl. Phys. 52(3), 1216–1223 (1981).
[CrossRef]

J. Mater. Res. (1)

K. Tanaka, K. Fujita, N. Matsuoka, K. Hirao, and N. Soga, “Large Faraday effect and local structure of alkali silicate glasses containing divalent europium ions,” J. Mater. Res. 13(7), 1989–1995 (1998).
[CrossRef]

J. Non-Cryst. Solids (1)

J. H. Kratzer and J. Schroeder, “Magnetooptic properties of semiconductor quantum dots in glass composition,” J. Non-Cryst. Solids 349, 299–308 (2004).
[CrossRef]

J. Phys. Chem. B (1)

C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106(31), 7619–7622 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Opt. Rev. (1)

T. Sato and I. Sone, “Development of bulk-optic current sensor using glass ring type Faraday cells,” Opt. Rev. 4(1), 35–37 (1997).
[CrossRef]

Phys. Chem. Glasses (1)

J. T. Kohli and J. E. Shelby, “Magneto-optical properties of rare earth aluminosilicate glasses,” Phys. Chem. Glasses 32, 109–114 (1991).

Other (7)

D. H. Kim, H. Y. Yang, B. H. Kim, U. C. Paek, and W.-T. Han, in Proceedings of Opto-Electronics and Communications Conference (OECC/COIN 2004), Yokohama Japan (2004), p.512.

K. Kurosawa, I. Masuda, and T. Yamashita, “Faraday effect current sensor using flint glass fiber for the sensing element,” in Proceedings of Optical Fiber Sensor Conference, Florence, USA (1993), pp. 415–418.

S. Matsuo, M. Ikeda, and K. Himeno, “Bend insensitive and low splice loss optical fiber for indoor wiring in FTTH,” in Proceedings of Optical Fiber Communication Conference (OFC), Anaheim, USA, Feb.23–27,2004 (Optical Society of America, Technical Digest, 2004), Paper number: ThI3.

M.-J. Li, P. Tandon, D. C. Bookbinder, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low bending loss single-mode fiber for FTTH,” in Proceedings of OFC/NFOEC-2008, San Diego, USA, Feb.24–28,2008 (Optical Society of America, Technical Digest, 2008), Paper number: PDP10.

I. Sakabe, H. Ishikawa, H. Tanji, Y. Terasawa, M. Ito, and T. Ueda, “Enhanced bending loss insensitive fiber and new cables for CWDM access networks,” in Proceeding of 53rd International Wire and Cable Symposium, Philadelphia, USA, November 14–17 (2004), pp. 112–118.

A. Ghatak, and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, USA, 1998).

Samsung bend insensitive optical fiber data-sheets (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Refractive index profile of the CdSe QDs-doped bend insensitive optical fiber.

Fig. 2
Fig. 2

Bending loss in the CdSe QDs-doped BIF at various bending loops of 5 mm radius. The mean bending loss was 0.47 dB/loop for the 5 mm of bending radius at 633 nm.

Fig. 3
Fig. 3

Mean bending loss in the CdSe QDs-doped BIF at various loop sizes. The mean bending loss was 0.47 dB for a loop of 5 mm bending radius and 0.18 dB for the loop of 10 mm radius at 633 nm.

Fig. 4
Fig. 4

Absorption spectrum of the CdSe QDs-doped BIF. CdSe QDs related absorption peaks were absorbed at 608 nm and 585 nm.

Fig. 5
Fig. 5

TEM photograph of the CdSe QDs-doped preform sample.

Fig. 6
Fig. 6

Various measurement results for the Faraday rotation angle with respect to the applied magnetic field measured at 633 nm for the CdSe QDs-doped BIF (Fiber length = 71 cm).

Fig. 7
Fig. 7

A current sensor using the CdSe QDs-doped bend-insensitive optical fiber.

Fig. 8
Fig. 8

Variations of the Faraday rotation angle (at 633 nm) with respect to the current in the conductor measured for the CdSe QDs-doped BIF (Loop radius = 10 mm). Bars show standard deviation.

Tables (1)

Tables Icon

Table 1 Comparison of modified current sensitivities (μrad/(Turn.A.m)) of various reported optical fiber current sensors.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

σ = ( 550.1 × 10 5 ) a 3
C = 8 × 10 6 / σ
θ = V B L
S = θ I N
S ' = θ I N ( R )
Δ β = ( β x β y ) = 2 π λ Δ n
L B = λ / Δ n
Δ n = ( n 3 / 2 ) ( ρ 11 ρ 12 ) σ
Δ n b = ( n 3 / 2 ) ( ρ 11 ρ 12 ) [ π λ ( 1 + ν p ) f r 2 R b 2 ]
R = 2 θ sin [ 4 θ 2 + ( Δ n b L ) 2 ] 4 θ 2 + ( Δ n b L ) 2

Metrics