Abstract

we demonstrated a high sensitive trap-loss spectroscopy technique by modulating fluorescence of cold atoms in magneto-optical trap, which allow a direct spectroscopy detection of the rovibrational levels with a very weak transition probability. The low-lying vibrational spectroscopy of υ = 3~17 of Cs2 0g - pure long-range state have been observed with rotational structures, which are well resolved up to J = 8. The rotational constants are obtained by fitting experimental data to a nonrigid rotation model.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Jones, E. Iesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
    [CrossRef]
  2. W. C. Stwalley, Y. H. Uang, and G. Pichler, “Pure long-range molecules,” Phys. Rev. Lett. 41(17), 1164–1167 (1978).
    [CrossRef]
  3. A. P. Mosk, M. X. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized Hydrogen,” Phys. Rev. Lett. 82(2), 307–310 (1999).
    [CrossRef]
  4. W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. Stoof, and R. G. Hulet, “Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium,” Phys. Rev. A 51(2), R871–R874 (1995).
    [CrossRef] [PubMed]
  5. L. P. Ratliff, M. E. Wagshul, P. D. Lett, S. L. Rolston, and W. D. Phillips, “Photoassociative spectroscopy of 1g, 0u+, and 0g- states of Na2,” J. Chem. Phys. 101(3), 2638–2641 (1994).
    [CrossRef]
  6. H. Wang, P. L. Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. 1. The 0g- pure long-range state and the long-range potential constants,” J. Chem. Phys. 106(19), 7899–7912 (1997).
    [CrossRef]
  7. R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of Rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994).
    [CrossRef] [PubMed]
  8. R. F. Gutterres, C. Amiot, A. Fioretti, C. Gabbanini, M. Mazzoni, and O. Dulieu, “Determination of the 87Rb sp state dipole matrix element and radiative lifetime from the photoassociation spectroscopy of the Rb2 0g-(P3/2) long-range state,” Phys. Rev. A 66(2), 024502 (2002).
    [CrossRef]
  9. H. Jelassi, B. Viaris de Lesegno, and L. Pruvost, “Photoassociation spectroscopy of 87Rb2(5s1/2+5p1/2)0g- long-range molecular states: analysis by Lu-Fano graph and improved LeRoy-Bernstein formula,” Phys. Rev. A 73(3), 032501 (2006).
    [CrossRef]
  10. A. Fioretti, D. Comparat, C. Drag, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, “Photoassociative spectroscopy of the Cs2 0g- long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
    [CrossRef]
  11. M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P(3/2) limit,” J. Chem. Phys. 121(14), 6779–6784 (2004).
    [CrossRef] [PubMed]
  12. M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004).
    [CrossRef] [PubMed]
  13. J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transition via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
    [CrossRef]
  14. D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga, “Enhanced Sensitivity to Variation of m(e)/m(p) in molecular spectra,” Phys. Rev. Lett. 100(4), 043202 (2008).
    [CrossRef] [PubMed]
  15. E. Tiesinga, K. M. Jones, P. D. Lett, U. Volz, C. J. Williams, and P. S. Julienne, “Measurement and modeling of hyperfine- and rotation-induced state mixing in large weakly bound sodium dimers,” Phys. Rev. A 71(5), 052703 (2005).
    [CrossRef]
  16. D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, “Photoassociative spectroscopy and formation of cold molecules in cold Cesium vapor: trap-loss spectrum versus ion spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
    [CrossRef] [PubMed]
  17. R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemuller, “Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors,” Appl. Phys. B 79, 993–999 (2004).
    [CrossRef]
  18. J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2 limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
    [CrossRef]
  19. C. Amiot, O. Dulieu, R. F. Gutterres, and F. Masnou-Seeuws, “Determination of Cs2 0g-(P3/2) potential curve and of Cs 6P1/2,3/2 atomic radiative lifetimes from photoassociation spectroscopy,” Phys. Rev. A 66(5), 052506 (2002).
    [CrossRef]
  20. T. Huang, S. Dong, X. Guo, L. Xiao, and S. Jia, “Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy,” Appl. Phys. Lett. 89(6), 061102 (2006).
    [CrossRef]
  21. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
    [CrossRef]
  22. C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
    [CrossRef] [PubMed]
  23. C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000).
    [CrossRef]
  24. B. H. Bransden, and C. J. Joachain, Physics of Atoms and Molecules (Longman Group, 1983).
  25. J. M. Hutson, “Centrifugal distortion constants for diatomic molecules: an improved computational method,” J. Phys. B 14(5), 851–857 (1981).
    [CrossRef]

2009

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2 limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

2008

D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga, “Enhanced Sensitivity to Variation of m(e)/m(p) in molecular spectra,” Phys. Rev. Lett. 100(4), 043202 (2008).
[CrossRef] [PubMed]

2007

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transition via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

2006

K. M. Jones, E. Iesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[CrossRef]

H. Jelassi, B. Viaris de Lesegno, and L. Pruvost, “Photoassociation spectroscopy of 87Rb2(5s1/2+5p1/2)0g- long-range molecular states: analysis by Lu-Fano graph and improved LeRoy-Bernstein formula,” Phys. Rev. A 73(3), 032501 (2006).
[CrossRef]

T. Huang, S. Dong, X. Guo, L. Xiao, and S. Jia, “Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy,” Appl. Phys. Lett. 89(6), 061102 (2006).
[CrossRef]

2005

E. Tiesinga, K. M. Jones, P. D. Lett, U. Volz, C. J. Williams, and P. S. Julienne, “Measurement and modeling of hyperfine- and rotation-induced state mixing in large weakly bound sodium dimers,” Phys. Rev. A 71(5), 052703 (2005).
[CrossRef]

2004

M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P(3/2) limit,” J. Chem. Phys. 121(14), 6779–6784 (2004).
[CrossRef] [PubMed]

M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004).
[CrossRef] [PubMed]

R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemuller, “Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors,” Appl. Phys. B 79, 993–999 (2004).
[CrossRef]

2002

R. F. Gutterres, C. Amiot, A. Fioretti, C. Gabbanini, M. Mazzoni, and O. Dulieu, “Determination of the 87Rb sp state dipole matrix element and radiative lifetime from the photoassociation spectroscopy of the Rb2 0g-(P3/2) long-range state,” Phys. Rev. A 66(2), 024502 (2002).
[CrossRef]

C. Amiot, O. Dulieu, R. F. Gutterres, and F. Masnou-Seeuws, “Determination of Cs2 0g-(P3/2) potential curve and of Cs 6P1/2,3/2 atomic radiative lifetimes from photoassociation spectroscopy,” Phys. Rev. A 66(5), 052506 (2002).
[CrossRef]

2000

C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000).
[CrossRef]

1999

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, “Photoassociative spectroscopy and formation of cold molecules in cold Cesium vapor: trap-loss spectrum versus ion spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

A. Fioretti, D. Comparat, C. Drag, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, “Photoassociative spectroscopy of the Cs2 0g- long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

A. P. Mosk, M. X. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized Hydrogen,” Phys. Rev. Lett. 82(2), 307–310 (1999).
[CrossRef]

1997

H. Wang, P. L. Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. 1. The 0g- pure long-range state and the long-range potential constants,” J. Chem. Phys. 106(19), 7899–7912 (1997).
[CrossRef]

1995

W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. Stoof, and R. G. Hulet, “Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium,” Phys. Rev. A 51(2), R871–R874 (1995).
[CrossRef] [PubMed]

1994

L. P. Ratliff, M. E. Wagshul, P. D. Lett, S. L. Rolston, and W. D. Phillips, “Photoassociative spectroscopy of 1g, 0u+, and 0g- states of Na2,” J. Chem. Phys. 101(3), 2638–2641 (1994).
[CrossRef]

R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of Rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994).
[CrossRef] [PubMed]

1990

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

1981

J. M. Hutson, “Centrifugal distortion constants for diatomic molecules: an improved computational method,” J. Phys. B 14(5), 851–857 (1981).
[CrossRef]

1978

W. C. Stwalley, Y. H. Uang, and G. Pichler, “Pure long-range molecules,” Phys. Rev. Lett. 41(17), 1164–1167 (1978).
[CrossRef]

1965

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
[CrossRef]

Abraham, E. R. I.

W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. Stoof, and R. G. Hulet, “Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium,” Phys. Rev. A 51(2), R871–R874 (1995).
[CrossRef] [PubMed]

Amiot, C.

R. F. Gutterres, C. Amiot, A. Fioretti, C. Gabbanini, M. Mazzoni, and O. Dulieu, “Determination of the 87Rb sp state dipole matrix element and radiative lifetime from the photoassociation spectroscopy of the Rb2 0g-(P3/2) long-range state,” Phys. Rev. A 66(2), 024502 (2002).
[CrossRef]

C. Amiot, O. Dulieu, R. F. Gutterres, and F. Masnou-Seeuws, “Determination of Cs2 0g-(P3/2) potential curve and of Cs 6P1/2,3/2 atomic radiative lifetimes from photoassociation spectroscopy,” Phys. Rev. A 66(5), 052506 (2002).
[CrossRef]

Arndt, R.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
[CrossRef]

Bergeman, T.

D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga, “Enhanced Sensitivity to Variation of m(e)/m(p) in molecular spectra,” Phys. Rev. Lett. 100(4), 043202 (2008).
[CrossRef] [PubMed]

Boussen, S.

C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000).
[CrossRef]

Chen, H.

M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004).
[CrossRef] [PubMed]

M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P(3/2) limit,” J. Chem. Phys. 121(14), 6779–6784 (2004).
[CrossRef] [PubMed]

Cline, R. A.

R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of Rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994).
[CrossRef] [PubMed]

Comparat, D.

C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000).
[CrossRef]

A. Fioretti, D. Comparat, C. Drag, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, “Photoassociative spectroscopy of the Cs2 0g- long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, “Photoassociative spectroscopy and formation of cold molecules in cold Cesium vapor: trap-loss spectrum versus ion spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

Crubellier, A.

C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000).
[CrossRef]

DeMille, D.

D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga, “Enhanced Sensitivity to Variation of m(e)/m(p) in molecular spectra,” Phys. Rev. Lett. 100(4), 043202 (2008).
[CrossRef] [PubMed]

Dong, S.

T. Huang, S. Dong, X. Guo, L. Xiao, and S. Jia, “Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy,” Appl. Phys. Lett. 89(6), 061102 (2006).
[CrossRef]

Drag, C.

C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000).
[CrossRef]

A. Fioretti, D. Comparat, C. Drag, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, “Photoassociative spectroscopy of the Cs2 0g- long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, “Photoassociative spectroscopy and formation of cold molecules in cold Cesium vapor: trap-loss spectrum versus ion spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

Dulieu, O.

R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemuller, “Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors,” Appl. Phys. B 79, 993–999 (2004).
[CrossRef]

C. Amiot, O. Dulieu, R. F. Gutterres, and F. Masnou-Seeuws, “Determination of Cs2 0g-(P3/2) potential curve and of Cs 6P1/2,3/2 atomic radiative lifetimes from photoassociation spectroscopy,” Phys. Rev. A 66(5), 052506 (2002).
[CrossRef]

R. F. Gutterres, C. Amiot, A. Fioretti, C. Gabbanini, M. Mazzoni, and O. Dulieu, “Determination of the 87Rb sp state dipole matrix element and radiative lifetime from the photoassociation spectroscopy of the Rb2 0g-(P3/2) long-range state,” Phys. Rev. A 66(2), 024502 (2002).
[CrossRef]

C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000).
[CrossRef]

A. Fioretti, D. Comparat, C. Drag, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, “Photoassociative spectroscopy of the Cs2 0g- long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, “Photoassociative spectroscopy and formation of cold molecules in cold Cesium vapor: trap-loss spectrum versus ion spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

Fioretti, A.

R. F. Gutterres, C. Amiot, A. Fioretti, C. Gabbanini, M. Mazzoni, and O. Dulieu, “Determination of the 87Rb sp state dipole matrix element and radiative lifetime from the photoassociation spectroscopy of the Rb2 0g-(P3/2) long-range state,” Phys. Rev. A 66(2), 024502 (2002).
[CrossRef]

A. Fioretti, D. Comparat, C. Drag, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, “Photoassociative spectroscopy of the Cs2 0g- long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, “Photoassociative spectroscopy and formation of cold molecules in cold Cesium vapor: trap-loss spectrum versus ion spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

Gabbanini, C.

R. F. Gutterres, C. Amiot, A. Fioretti, C. Gabbanini, M. Mazzoni, and O. Dulieu, “Determination of the 87Rb sp state dipole matrix element and radiative lifetime from the photoassociation spectroscopy of the Rb2 0g-(P3/2) long-range state,” Phys. Rev. A 66(2), 024502 (2002).
[CrossRef]

Gould, P. L.

H. Wang, P. L. Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. 1. The 0g- pure long-range state and the long-range potential constants,” J. Chem. Phys. 106(19), 7899–7912 (1997).
[CrossRef]

Guibal, S.

C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000).
[CrossRef]

Guo, X.

T. Huang, S. Dong, X. Guo, L. Xiao, and S. Jia, “Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy,” Appl. Phys. Lett. 89(6), 061102 (2006).
[CrossRef]

Gutterres, R. F.

R. F. Gutterres, C. Amiot, A. Fioretti, C. Gabbanini, M. Mazzoni, and O. Dulieu, “Determination of the 87Rb sp state dipole matrix element and radiative lifetime from the photoassociation spectroscopy of the Rb2 0g-(P3/2) long-range state,” Phys. Rev. A 66(2), 024502 (2002).
[CrossRef]

C. Amiot, O. Dulieu, R. F. Gutterres, and F. Masnou-Seeuws, “Determination of Cs2 0g-(P3/2) potential curve and of Cs 6P1/2,3/2 atomic radiative lifetimes from photoassociation spectroscopy,” Phys. Rev. A 66(5), 052506 (2002).
[CrossRef]

Heinzen, D. J.

R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of Rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994).
[CrossRef] [PubMed]

Hijmans, T. W.

A. P. Mosk, M. X. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized Hydrogen,” Phys. Rev. Lett. 82(2), 307–310 (1999).
[CrossRef]

Huang, T.

T. Huang, S. Dong, X. Guo, L. Xiao, and S. Jia, “Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy,” Appl. Phys. Lett. 89(6), 061102 (2006).
[CrossRef]

Hulet, R. G.

W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. Stoof, and R. G. Hulet, “Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium,” Phys. Rev. A 51(2), R871–R874 (1995).
[CrossRef] [PubMed]

Hutson, J. M.

J. M. Hutson, “Centrifugal distortion constants for diatomic molecules: an improved computational method,” J. Phys. B 14(5), 851–857 (1981).
[CrossRef]

Iesinga, E.

K. M. Jones, E. Iesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[CrossRef]

Jelassi, H.

H. Jelassi, B. Viaris de Lesegno, and L. Pruvost, “Photoassociation spectroscopy of 87Rb2(5s1/2+5p1/2)0g- long-range molecular states: analysis by Lu-Fano graph and improved LeRoy-Bernstein formula,” Phys. Rev. A 73(3), 032501 (2006).
[CrossRef]

Jia, S.

T. Huang, S. Dong, X. Guo, L. Xiao, and S. Jia, “Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy,” Appl. Phys. Lett. 89(6), 061102 (2006).
[CrossRef]

Jia, S. T.

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2 limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transition via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

Jones, K. M.

K. M. Jones, E. Iesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[CrossRef]

E. Tiesinga, K. M. Jones, P. D. Lett, U. Volz, C. J. Williams, and P. S. Julienne, “Measurement and modeling of hyperfine- and rotation-induced state mixing in large weakly bound sodium dimers,” Phys. Rev. A 71(5), 052703 (2005).
[CrossRef]

Julienne, P. S.

K. M. Jones, E. Iesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[CrossRef]

E. Tiesinga, K. M. Jones, P. D. Lett, U. Volz, C. J. Williams, and P. S. Julienne, “Measurement and modeling of hyperfine- and rotation-induced state mixing in large weakly bound sodium dimers,” Phys. Rev. A 71(5), 052703 (2005).
[CrossRef]

Kotochigova, S.

D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga, “Enhanced Sensitivity to Variation of m(e)/m(p) in molecular spectra,” Phys. Rev. Lett. 100(4), 043202 (2008).
[CrossRef] [PubMed]

Krafe, S. D.

R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemuller, “Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors,” Appl. Phys. B 79, 993–999 (2004).
[CrossRef]

Lange, J.

R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemuller, “Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors,” Appl. Phys. B 79, 993–999 (2004).
[CrossRef]

Lett, P. D.

K. M. Jones, E. Iesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[CrossRef]

E. Tiesinga, K. M. Jones, P. D. Lett, U. Volz, C. J. Williams, and P. S. Julienne, “Measurement and modeling of hyperfine- and rotation-induced state mixing in large weakly bound sodium dimers,” Phys. Rev. A 71(5), 052703 (2005).
[CrossRef]

L. P. Ratliff, M. E. Wagshul, P. D. Lett, S. L. Rolston, and W. D. Phillips, “Photoassociative spectroscopy of 1g, 0u+, and 0g- states of Na2,” J. Chem. Phys. 101(3), 2638–2641 (1994).
[CrossRef]

Ma, J.

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2 limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transition via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

Masnou-Seeuws, F.

C. Amiot, O. Dulieu, R. F. Gutterres, and F. Masnou-Seeuws, “Determination of Cs2 0g-(P3/2) potential curve and of Cs 6P1/2,3/2 atomic radiative lifetimes from photoassociation spectroscopy,” Phys. Rev. A 66(5), 052506 (2002).
[CrossRef]

A. Fioretti, D. Comparat, C. Drag, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, “Photoassociative spectroscopy of the Cs2 0g- long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

Mazzoni, M.

R. F. Gutterres, C. Amiot, A. Fioretti, C. Gabbanini, M. Mazzoni, and O. Dulieu, “Determination of the 87Rb sp state dipole matrix element and radiative lifetime from the photoassociation spectroscopy of the Rb2 0g-(P3/2) long-range state,” Phys. Rev. A 66(2), 024502 (2002).
[CrossRef]

McAlexander, W. I.

W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. Stoof, and R. G. Hulet, “Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium,” Phys. Rev. A 51(2), R871–R874 (1995).
[CrossRef] [PubMed]

Miller, J. D.

R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of Rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994).
[CrossRef] [PubMed]

Monroe, C.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Mosk, A. P.

A. P. Mosk, M. X. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized Hydrogen,” Phys. Rev. Lett. 82(2), 307–310 (1999).
[CrossRef]

Mudrich, M.

R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemuller, “Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors,” Appl. Phys. B 79, 993–999 (2004).
[CrossRef]

Phillips, W. D.

L. P. Ratliff, M. E. Wagshul, P. D. Lett, S. L. Rolston, and W. D. Phillips, “Photoassociative spectroscopy of 1g, 0u+, and 0g- states of Na2,” J. Chem. Phys. 101(3), 2638–2641 (1994).
[CrossRef]

Pichler, G.

W. C. Stwalley, Y. H. Uang, and G. Pichler, “Pure long-range molecules,” Phys. Rev. Lett. 41(17), 1164–1167 (1978).
[CrossRef]

Pichler, M.

M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004).
[CrossRef] [PubMed]

M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P(3/2) limit,” J. Chem. Phys. 121(14), 6779–6784 (2004).
[CrossRef] [PubMed]

Pillet, P.

C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000).
[CrossRef]

A. Fioretti, D. Comparat, C. Drag, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, “Photoassociative spectroscopy of the Cs2 0g- long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, “Photoassociative spectroscopy and formation of cold molecules in cold Cesium vapor: trap-loss spectrum versus ion spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

Pruvost, L.

H. Jelassi, B. Viaris de Lesegno, and L. Pruvost, “Photoassociation spectroscopy of 87Rb2(5s1/2+5p1/2)0g- long-range molecular states: analysis by Lu-Fano graph and improved LeRoy-Bernstein formula,” Phys. Rev. A 73(3), 032501 (2006).
[CrossRef]

Ratliff, L. P.

L. P. Ratliff, M. E. Wagshul, P. D. Lett, S. L. Rolston, and W. D. Phillips, “Photoassociative spectroscopy of 1g, 0u+, and 0g- states of Na2,” J. Chem. Phys. 101(3), 2638–2641 (1994).
[CrossRef]

Reynolds, M. X. W.

A. P. Mosk, M. X. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized Hydrogen,” Phys. Rev. Lett. 82(2), 307–310 (1999).
[CrossRef]

Ritchie, N. W. M.

W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. Stoof, and R. G. Hulet, “Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium,” Phys. Rev. A 51(2), R871–R874 (1995).
[CrossRef] [PubMed]

Robinson, H.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Rolston, S. L.

L. P. Ratliff, M. E. Wagshul, P. D. Lett, S. L. Rolston, and W. D. Phillips, “Photoassociative spectroscopy of 1g, 0u+, and 0g- states of Na2,” J. Chem. Phys. 101(3), 2638–2641 (1994).
[CrossRef]

Sage, J.

D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga, “Enhanced Sensitivity to Variation of m(e)/m(p) in molecular spectra,” Phys. Rev. Lett. 100(4), 043202 (2008).
[CrossRef] [PubMed]

Sainis, S.

D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga, “Enhanced Sensitivity to Variation of m(e)/m(p) in molecular spectra,” Phys. Rev. Lett. 100(4), 043202 (2008).
[CrossRef] [PubMed]

Staudt, M. U.

R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemuller, “Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors,” Appl. Phys. B 79, 993–999 (2004).
[CrossRef]

Stoof, H. T.

W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. Stoof, and R. G. Hulet, “Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium,” Phys. Rev. A 51(2), R871–R874 (1995).
[CrossRef] [PubMed]

Stwalley, W. C.

M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004).
[CrossRef] [PubMed]

M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P(3/2) limit,” J. Chem. Phys. 121(14), 6779–6784 (2004).
[CrossRef] [PubMed]

H. Wang, P. L. Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. 1. The 0g- pure long-range state and the long-range potential constants,” J. Chem. Phys. 106(19), 7899–7912 (1997).
[CrossRef]

W. C. Stwalley, Y. H. Uang, and G. Pichler, “Pure long-range molecules,” Phys. Rev. Lett. 41(17), 1164–1167 (1978).
[CrossRef]

Swann, W.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Tiesinga, E.

D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga, “Enhanced Sensitivity to Variation of m(e)/m(p) in molecular spectra,” Phys. Rev. Lett. 100(4), 043202 (2008).
[CrossRef] [PubMed]

E. Tiesinga, K. M. Jones, P. D. Lett, U. Volz, C. J. Williams, and P. S. Julienne, “Measurement and modeling of hyperfine- and rotation-induced state mixing in large weakly bound sodium dimers,” Phys. Rev. A 71(5), 052703 (2005).
[CrossRef]

Tolra, B. L.

C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000).
[CrossRef]

Uang, Y. H.

W. C. Stwalley, Y. H. Uang, and G. Pichler, “Pure long-range molecules,” Phys. Rev. Lett. 41(17), 1164–1167 (1978).
[CrossRef]

Vanhaecke, N.

R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemuller, “Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors,” Appl. Phys. B 79, 993–999 (2004).
[CrossRef]

Vatasescu, M.

C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000).
[CrossRef]

Viaris de Lesegno, B.

H. Jelassi, B. Viaris de Lesegno, and L. Pruvost, “Photoassociation spectroscopy of 87Rb2(5s1/2+5p1/2)0g- long-range molecular states: analysis by Lu-Fano graph and improved LeRoy-Bernstein formula,” Phys. Rev. A 73(3), 032501 (2006).
[CrossRef]

Volz, U.

E. Tiesinga, K. M. Jones, P. D. Lett, U. Volz, C. J. Williams, and P. S. Julienne, “Measurement and modeling of hyperfine- and rotation-induced state mixing in large weakly bound sodium dimers,” Phys. Rev. A 71(5), 052703 (2005).
[CrossRef]

Wagshul, M. E.

L. P. Ratliff, M. E. Wagshul, P. D. Lett, S. L. Rolston, and W. D. Phillips, “Photoassociative spectroscopy of 1g, 0u+, and 0g- states of Na2,” J. Chem. Phys. 101(3), 2638–2641 (1994).
[CrossRef]

Walraven, J. T. M.

A. P. Mosk, M. X. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized Hydrogen,” Phys. Rev. Lett. 82(2), 307–310 (1999).
[CrossRef]

Wang, H.

H. Wang, P. L. Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. 1. The 0g- pure long-range state and the long-range potential constants,” J. Chem. Phys. 106(19), 7899–7912 (1997).
[CrossRef]

Wang, L. R.

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2 limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transition via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

Weidemuller, M.

R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemuller, “Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors,” Appl. Phys. B 79, 993–999 (2004).
[CrossRef]

Wester, R.

R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemuller, “Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors,” Appl. Phys. B 79, 993–999 (2004).
[CrossRef]

Wieman, C.

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Williams, C. J.

E. Tiesinga, K. M. Jones, P. D. Lett, U. Volz, C. J. Williams, and P. S. Julienne, “Measurement and modeling of hyperfine- and rotation-induced state mixing in large weakly bound sodium dimers,” Phys. Rev. A 71(5), 052703 (2005).
[CrossRef]

W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. Stoof, and R. G. Hulet, “Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium,” Phys. Rev. A 51(2), R871–R874 (1995).
[CrossRef] [PubMed]

Xiao, L.

T. Huang, S. Dong, X. Guo, L. Xiao, and S. Jia, “Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy,” Appl. Phys. Lett. 89(6), 061102 (2006).
[CrossRef]

Xiao, L. T.

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2 limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transition via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

Zhao, Y. T.

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2 limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transition via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

Appl. Phys. B

R. Wester, S. D. Krafe, M. Mudrich, M. U. Staudt, J. Lange, N. Vanhaecke, O. Dulieu, and M. Weidemuller, “Photoassociation inside an optical dipole trap: absolute rate coefficients and Franck-Condon factors,” Appl. Phys. B 79, 993–999 (2004).
[CrossRef]

Appl. Phys. Lett.

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transition via modulating molecules,” Appl. Phys. Lett. 91(16), 161101 (2007).
[CrossRef]

T. Huang, S. Dong, X. Guo, L. Xiao, and S. Jia, “Signal-to-noise ratio improvement of photon counting using wavelength modulation spectroscopy,” Appl. Phys. Lett. 89(6), 061102 (2006).
[CrossRef]

Eur. Phys. J. D

A. Fioretti, D. Comparat, C. Drag, O. Dulieu, F. Masnou-Seeuws, and P. Pillet, “Photoassociative spectroscopy of the Cs2 0g- long-range state,” Eur. Phys. J. D 5(3), 389–403 (1999).
[CrossRef]

IEEE J. Quantum Electron.

C. Drag, B. L. Tolra, O. Dulieu, D. Comparat, M. Vatasescu, S. Boussen, S. Guibal, A. Crubellier, and P. Pillet, “Experimental versus theoretical rates for photoassociation and for formation of ultracold molecules,” IEEE J. Quantum Electron. 36(12), 1378–1388 (2000).
[CrossRef]

J. Appl. Phys.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36(8), 2522–2524 (1965).
[CrossRef]

J. Chem. Phys.

M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P(3/2) limit,” J. Chem. Phys. 121(14), 6779–6784 (2004).
[CrossRef] [PubMed]

M. Pichler, H. Chen, and W. C. Stwalley, “Photoassociation spectroscopy of ultracold Cs below the 6P1/2 limit,” J. Chem. Phys. 121(4), 1796–1801 (2004).
[CrossRef] [PubMed]

L. P. Ratliff, M. E. Wagshul, P. D. Lett, S. L. Rolston, and W. D. Phillips, “Photoassociative spectroscopy of 1g, 0u+, and 0g- states of Na2,” J. Chem. Phys. 101(3), 2638–2641 (1994).
[CrossRef]

H. Wang, P. L. Gould, and W. C. Stwalley, “Long-range interaction of the 39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. 1. The 0g- pure long-range state and the long-range potential constants,” J. Chem. Phys. 106(19), 7899–7912 (1997).
[CrossRef]

J. Mol. Spectrosc.

J. Ma, L. R. Wang, Y. T. Zhao, L. T. Xiao, and S. T. Jia, “High sensitive photoassociation spectroscopy of the Cs molecular 0u+ and 1g long-range states below the 6S1/2 + 6P3/2 limit,” J. Mol. Spectrosc. 255(2), 106–110 (2009).
[CrossRef]

D. Comparat, C. Drag, A. Fioretti, O. Dulieu, and P. Pillet, “Photoassociative spectroscopy and formation of cold molecules in cold Cesium vapor: trap-loss spectrum versus ion spectrum,” J. Mol. Spectrosc. 195(2), 229–235 (1999).
[CrossRef] [PubMed]

J. Phys. B

J. M. Hutson, “Centrifugal distortion constants for diatomic molecules: an improved computational method,” J. Phys. B 14(5), 851–857 (1981).
[CrossRef]

Phys. Rev. A

E. Tiesinga, K. M. Jones, P. D. Lett, U. Volz, C. J. Williams, and P. S. Julienne, “Measurement and modeling of hyperfine- and rotation-induced state mixing in large weakly bound sodium dimers,” Phys. Rev. A 71(5), 052703 (2005).
[CrossRef]

C. Amiot, O. Dulieu, R. F. Gutterres, and F. Masnou-Seeuws, “Determination of Cs2 0g-(P3/2) potential curve and of Cs 6P1/2,3/2 atomic radiative lifetimes from photoassociation spectroscopy,” Phys. Rev. A 66(5), 052506 (2002).
[CrossRef]

R. F. Gutterres, C. Amiot, A. Fioretti, C. Gabbanini, M. Mazzoni, and O. Dulieu, “Determination of the 87Rb sp state dipole matrix element and radiative lifetime from the photoassociation spectroscopy of the Rb2 0g-(P3/2) long-range state,” Phys. Rev. A 66(2), 024502 (2002).
[CrossRef]

H. Jelassi, B. Viaris de Lesegno, and L. Pruvost, “Photoassociation spectroscopy of 87Rb2(5s1/2+5p1/2)0g- long-range molecular states: analysis by Lu-Fano graph and improved LeRoy-Bernstein formula,” Phys. Rev. A 73(3), 032501 (2006).
[CrossRef]

W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. Stoof, and R. G. Hulet, “Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium,” Phys. Rev. A 51(2), R871–R874 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

W. C. Stwalley, Y. H. Uang, and G. Pichler, “Pure long-range molecules,” Phys. Rev. Lett. 41(17), 1164–1167 (1978).
[CrossRef]

A. P. Mosk, M. X. W. Reynolds, T. W. Hijmans, and J. T. M. Walraven, “Photoassociation of spin-polarized Hydrogen,” Phys. Rev. Lett. 82(2), 307–310 (1999).
[CrossRef]

R. A. Cline, J. D. Miller, and D. J. Heinzen, “Study of Rb2 long-range states by high-resolution photoassociation spectroscopy,” Phys. Rev. Lett. 73(5), 632–635 (1994).
[CrossRef] [PubMed]

D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga, “Enhanced Sensitivity to Variation of m(e)/m(p) in molecular spectra,” Phys. Rev. Lett. 100(4), 043202 (2008).
[CrossRef] [PubMed]

C. Monroe, W. Swann, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65(13), 1571–1574 (1990).
[CrossRef] [PubMed]

Rev. Mod. Phys.

K. M. Jones, E. Iesinga, P. D. Lett, and P. S. Julienne, “Ultracold photoassociation spectroscopy: Long-range molecules and atomic scattering,” Rev. Mod. Phys. 78(2), 483–535 (2006).
[CrossRef]

Other

B. H. Bransden, and C. J. Joachain, Physics of Atoms and Molecules (Longman Group, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. The repumping laser is not shown here. The trapping laser (DL100) frequency has been locked to about two natural line-widths red detuned from the 6S1/2 (F = 4)→6P3/2 (F’ = 5) atomic transition by saturation absorption spectroscopy. WLM: wavelength meter; OI: optical isolator; SP: shaping prism; L: lens; M: mirror; PC: personal computer.

Fig. 2
Fig. 2

Rotationally resolved rap-loss spectra for υ = 17, 10 and 4 of Cs2 0g - pure long-range state. Rotational progressions are observed for each vibrational atate up to J = 8. The rotational structure becomes broader for lower values of υ.

Fig. 3
Fig. 3

Dependence of the level intervals Δν on the rotational quantum number J for υ = 4, 10 and 17 of Cs2 0g - pure long-range state. The symbols represent experimental data, while the lines are fits to the nonlinear Eq. (4), as described in the text. The square of coefficient of correlation (R2) in the fit process is up to 0.999 for each υ.

Fig. 4
Fig. 4

Dependence of the rotational constant B on the low-lying vibrational quantum number υ of Cs2 0g - pure long-range state. The full dots and triangles represent results derived from this work, while the open circles represent that in reference [10].

Tables (1)

Tables Icon

Table 1 The experimental energies and the molecular constants (B and D) of vibrational levels of the 0g -(P3/2) pure long-range state.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

υ ( t ) = υ 0 m cos ( 2 π f t )
I ( t ) = I 0 δ I cos ( 2 π f t )
E / h c = B J ( J + 1 ) D J 2 ( J + 1 ) 2
Δ E = [ E ( J + 1 ) E ( J ) ] / h c = 2 B ( J + 1 ) 4 D ( J + 1 ) 3

Metrics