Abstract

We report the first demonstration of a Yb:YAG thin disk laser wherein the gain medium is intracavity face-cooled through bonding to an optical quality SiC prism. Due to the particular design of the composite bonded Yb:YAG/SiC-prism gain element, the laser beam impinges on all refractive index interfaces inside the laser cavity at Brewster’s angles. The laser beam undergoes total internal reflection (TIR) at the bottom of the Yb(10%):YAG thin disk layer in a V-bounce cavity configuration. Through the use of TIR and Brewster’s angles, no optical coatings, either anti-reflective (AR) or highly reflective (HR), are required inside the laser cavity. In this first demonstration, the 936.5-nm diode pumped laser performed with ~38% slope efficiency at 12 W of quasi-CW (Q-CW) output power at 1030 nm with a beam quality measured at M2 = 1.5. This demonstration opens up a viable path toward novel thin disk laser designs with efficient double-sided room-temperature heatsinking via materials with the thermal conductivity of copper on both sides of the disk.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Sims, A. Stein, and C. Roth, “Rods pumped by flash lamps,” Appl. Opt. 6(3), 579–580 (1967).
    [CrossRef] [PubMed]
  2. J. Eichler, N. Hodgson, and H. Weber, “Output power and efficiencies of slab laser systems,” J. Appl. Phys. 66(10), 4608–4613 (1989).
    [CrossRef]
  3. T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, “Yb:YAG and Nd:YAG edge-pumped slab lasers,” Opt. Lett. 26(13), 986–988 (2001).
    [CrossRef]
  4. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
  5. A. Giesen and J. Speiser, “Fifteen years of work on thin disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
    [CrossRef]
  6. V. Hasson, and H.-P. Chou, “Cooling of High Power Laser Systems,” US Patent 6,667,999 (2003).
  7. Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high power diode pumped solid state lasers,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE 4968, 106–114 (2003).
  8. C. Ding-Xiang, Y. Hai-Wu, Z. Wan-Guo, H. Shao-Bo, and W. Xiao-Feng, “Temperature-related performance of Yb3+:YAG disc lasers and optimum design for diamond cooling,” Chin. Phys. 15(12), 2963– (2006).
    [CrossRef]
  9. Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
    [CrossRef]
  10. G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007).
    [CrossRef]
  11. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
    [CrossRef]
  12. http://www.cree.com/products/
  13. V. A. Dmitriev, and M. G. Spencer, “SiC fabrication technology: growth and doping,” in SiC Materials and Devices, Yoon-Soo Park, ed., (Academic Press, London, 1998), pp. 21–63.
  14. E. V. Ivakin, A. V. Sukhadolau, V. G. Ralchenko, and A. V. Vlasov, “Laser-induced transient gratings application for measurement of thermal conductivity of CVD diamond,” Proc. SPIE 5121, 253–258 (2003).
    [CrossRef]
  15. J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003).
    [CrossRef]
  16. P. T. B. Shaffer, “Refractive index, dispersion, and birefringence of silicon carbide polytypes,” Appl. Opt. 10(5), 1034–1036 (1971).
    [CrossRef] [PubMed]
  17. A. J. Alcock and J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 3–8 (1997).
    [CrossRef]
  18. A. Minassian and M. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230(1-3), 191–195 (2004).
    [CrossRef]
  19. M. Stockmeier, R. Müller, S. A. Sakwe, P. J. Wellmann, and A. Magerl, “On the lattice parameters of silicon carbide,” J. Appl. Phys. 105(3), 033511 (2009).
    [CrossRef]
  20. Z. Li and R. C. Bradt, “Thermal expansion of the hexagonal (4H) polytype of SiC,” J. Appl. Phys. 60(2), 612–614 (1986).
    [CrossRef]
  21. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3,LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys . 98, 103514–1 - 103514–14 (2005).
    [CrossRef]
  22. H. Lee, H. E. Meissner, and O. R. Meissner, “Stress Relief of Adhesive-Free-Bond (AFB®) Laser Crystal Composites at Elevated and Cryogenic Temperatures,” in 19th Solid State and Diode Laser Technology Review Technical Digest, 2006, Paper: Laser-5.
  23. A. E. Siegman, G. Nemes, and J. Serna, “How to (Maybe) Measure Laser Beam Quality,” in Diode Pumped Solid State Lasers:Applications and Issues, M. W. Dowley, ed., OSA TOPS Vol. 17 (Optical Society of America, Washington, D.C., 1998), pp. 184–199.
  24. A. Tunnermann, H. Zellmer, W. Schone, A. Giesen, and K. Contag, “New Concepts for Diode-Pumped Solid-State Lasers,” in High-Power Diode Lasers, Topics Appl. Phys.78, R. Diehl, ed., (Springer Verlag, Berlin-Heidelberg, 2000), pp. 369–408.
  25. T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
    [CrossRef]
  26. A. Golubovic, S. Nikolic, R. Gajic, S. Duric, and A. Valcic, “The growth of Nd:YAG single crystals,” J. Serb. Chem. Soc. 67(4), 291–300 (2002).
    [CrossRef]

2009 (1)

M. Stockmeier, R. Müller, S. A. Sakwe, P. J. Wellmann, and A. Magerl, “On the lattice parameters of silicon carbide,” J. Appl. Phys. 105(3), 033511 (2009).
[CrossRef]

2007 (2)

A. Giesen and J. Speiser, “Fifteen years of work on thin disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007).
[CrossRef]

2006 (1)

C. Ding-Xiang, Y. Hai-Wu, Z. Wan-Guo, H. Shao-Bo, and W. Xiao-Feng, “Temperature-related performance of Yb3+:YAG disc lasers and optimum design for diamond cooling,” Chin. Phys. 15(12), 2963– (2006).
[CrossRef]

2005 (2)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3,LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys . 98, 103514–1 - 103514–14 (2005).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

2004 (2)

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

A. Minassian and M. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230(1-3), 191–195 (2004).
[CrossRef]

2003 (2)

E. V. Ivakin, A. V. Sukhadolau, V. G. Ralchenko, and A. V. Vlasov, “Laser-induced transient gratings application for measurement of thermal conductivity of CVD diamond,” Proc. SPIE 5121, 253–258 (2003).
[CrossRef]

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003).
[CrossRef]

2002 (1)

A. Golubovic, S. Nikolic, R. Gajic, S. Duric, and A. Valcic, “The growth of Nd:YAG single crystals,” J. Serb. Chem. Soc. 67(4), 291–300 (2002).
[CrossRef]

2001 (1)

1997 (1)

A. J. Alcock and J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 3–8 (1997).
[CrossRef]

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

1993 (1)

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[CrossRef]

1989 (1)

J. Eichler, N. Hodgson, and H. Weber, “Output power and efficiencies of slab laser systems,” J. Appl. Phys. 66(10), 4608–4613 (1989).
[CrossRef]

1986 (1)

Z. Li and R. C. Bradt, “Thermal expansion of the hexagonal (4H) polytype of SiC,” J. Appl. Phys. 60(2), 612–614 (1986).
[CrossRef]

1971 (1)

1967 (1)

Abram, R.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3,LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys . 98, 103514–1 - 103514–14 (2005).
[CrossRef]

Alcock, A. J.

A. J. Alcock and J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 3–8 (1997).
[CrossRef]

Bernard, J. E.

A. J. Alcock and J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 3–8 (1997).
[CrossRef]

Bradt, R. C.

Z. Li and R. C. Bradt, “Thermal expansion of the hexagonal (4H) polytype of SiC,” J. Appl. Phys. 60(2), 612–614 (1986).
[CrossRef]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Burns, D.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003).
[CrossRef]

Byer, R. L.

Calvez, S.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003).
[CrossRef]

Damzen, M.

A. Minassian and M. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230(1-3), 191–195 (2004).
[CrossRef]

Dawson, M. D.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003).
[CrossRef]

Ding-Xiang, C.

C. Ding-Xiang, Y. Hai-Wu, Z. Wan-Guo, H. Shao-Bo, and W. Xiao-Feng, “Temperature-related performance of Yb3+:YAG disc lasers and optimum design for diamond cooling,” Chin. Phys. 15(12), 2963– (2006).
[CrossRef]

Dubinskii, M.

G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007).
[CrossRef]

Duric, S.

A. Golubovic, S. Nikolic, R. Gajic, S. Duric, and A. Valcic, “The growth of Nd:YAG single crystals,” J. Serb. Chem. Soc. 67(4), 291–300 (2002).
[CrossRef]

Eichler, J.

J. Eichler, N. Hodgson, and H. Weber, “Output power and efficiencies of slab laser systems,” J. Appl. Phys. 66(10), 4608–4613 (1989).
[CrossRef]

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3,LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys . 98, 103514–1 - 103514–14 (2005).
[CrossRef]

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[CrossRef]

Ferguson, A. I.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003).
[CrossRef]

Fujita, M.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

Gajic, R.

A. Golubovic, S. Nikolic, R. Gajic, S. Duric, and A. Valcic, “The growth of Nd:YAG single crystals,” J. Serb. Chem. Soc. 67(4), 291–300 (2002).
[CrossRef]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Glick, Y.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Goldring, S.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Golubovic, A.

A. Golubovic, S. Nikolic, R. Gajic, S. Duric, and A. Valcic, “The growth of Nd:YAG single crystals,” J. Serb. Chem. Soc. 67(4), 291–300 (2002).
[CrossRef]

Hai-Wu, Y.

C. Ding-Xiang, Y. Hai-Wu, Z. Wan-Guo, H. Shao-Bo, and W. Xiao-Feng, “Temperature-related performance of Yb3+:YAG disc lasers and optimum design for diamond cooling,” Chin. Phys. 15(12), 2963– (2006).
[CrossRef]

Hastie, J. E.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003).
[CrossRef]

Hodgson, N.

J. Eichler, N. Hodgson, and H. Weber, “Output power and efficiencies of slab laser systems,” J. Appl. Phys. 66(10), 4608–4613 (1989).
[CrossRef]

Hopkins, J. M.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003).
[CrossRef]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Ivakin, E. V.

E. V. Ivakin, A. V. Sukhadolau, V. G. Ralchenko, and A. V. Vlasov, “Laser-induced transient gratings application for measurement of thermal conductivity of CVD diamond,” Proc. SPIE 5121, 253–258 (2003).
[CrossRef]

Izawa, Y.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

Jeon, C. W.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003).
[CrossRef]

Kaufman, G.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Kawanaka, J.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

Kawashima, T.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

Lavi, R.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Lebiush, E.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Li, Z.

Z. Li and R. C. Bradt, “Thermal expansion of the hexagonal (4H) polytype of SiC,” J. Appl. Phys. 60(2), 612–614 (1986).
[CrossRef]

Magerl, A.

M. Stockmeier, R. Müller, S. A. Sakwe, P. J. Wellmann, and A. Magerl, “On the lattice parameters of silicon carbide,” J. Appl. Phys. 105(3), 033511 (2009).
[CrossRef]

Merkle, L. D.

G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007).
[CrossRef]

Minassian, A.

A. Minassian and M. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230(1-3), 191–195 (2004).
[CrossRef]

Müller, R.

M. Stockmeier, R. Müller, S. A. Sakwe, P. J. Wellmann, and A. Magerl, “On the lattice parameters of silicon carbide,” J. Appl. Phys. 105(3), 033511 (2009).
[CrossRef]

Newburgh, G. A.

G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007).
[CrossRef]

Nikolic, S.

A. Golubovic, S. Nikolic, R. Gajic, S. Duric, and A. Valcic, “The growth of Nd:YAG single crystals,” J. Serb. Chem. Soc. 67(4), 291–300 (2002).
[CrossRef]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3,LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys . 98, 103514–1 - 103514–14 (2005).
[CrossRef]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Ralchenko, V. G.

E. V. Ivakin, A. V. Sukhadolau, V. G. Ralchenko, and A. V. Vlasov, “Laser-induced transient gratings application for measurement of thermal conductivity of CVD diamond,” Proc. SPIE 5121, 253–258 (2003).
[CrossRef]

Riis, E.

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003).
[CrossRef]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3,LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys . 98, 103514–1 - 103514–14 (2005).
[CrossRef]

Roth, C.

Rutherford, T. S.

Sakwe, S. A.

M. Stockmeier, R. Müller, S. A. Sakwe, P. J. Wellmann, and A. Magerl, “On the lattice parameters of silicon carbide,” J. Appl. Phys. 105(3), 033511 (2009).
[CrossRef]

Shaffer, P. T. B.

Shao-Bo, H.

C. Ding-Xiang, Y. Hai-Wu, Z. Wan-Guo, H. Shao-Bo, and W. Xiao-Feng, “Temperature-related performance of Yb3+:YAG disc lasers and optimum design for diamond cooling,” Chin. Phys. 15(12), 2963– (2006).
[CrossRef]

Sims, S. D.

Sinha, S.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

Stein, A.

Stockmeier, M.

M. Stockmeier, R. Müller, S. A. Sakwe, P. J. Wellmann, and A. Magerl, “On the lattice parameters of silicon carbide,” J. Appl. Phys. 105(3), 033511 (2009).
[CrossRef]

Sukhadolau, A. V.

E. V. Ivakin, A. V. Sukhadolau, V. G. Ralchenko, and A. V. Vlasov, “Laser-induced transient gratings application for measurement of thermal conductivity of CVD diamond,” Proc. SPIE 5121, 253–258 (2003).
[CrossRef]

Tal, A.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Tokita, S.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

Tulloch, W. M.

Tzuk, Y.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Valcic, A.

A. Golubovic, S. Nikolic, R. Gajic, S. Duric, and A. Valcic, “The growth of Nd:YAG single crystals,” J. Serb. Chem. Soc. 67(4), 291–300 (2002).
[CrossRef]

Vlasov, A. V.

E. V. Ivakin, A. V. Sukhadolau, V. G. Ralchenko, and A. V. Vlasov, “Laser-induced transient gratings application for measurement of thermal conductivity of CVD diamond,” Proc. SPIE 5121, 253–258 (2003).
[CrossRef]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Wan-Guo, Z.

C. Ding-Xiang, Y. Hai-Wu, Z. Wan-Guo, H. Shao-Bo, and W. Xiao-Feng, “Temperature-related performance of Yb3+:YAG disc lasers and optimum design for diamond cooling,” Chin. Phys. 15(12), 2963– (2006).
[CrossRef]

Weber, H.

J. Eichler, N. Hodgson, and H. Weber, “Output power and efficiencies of slab laser systems,” J. Appl. Phys. 66(10), 4608–4613 (1989).
[CrossRef]

Wellmann, P. J.

M. Stockmeier, R. Müller, S. A. Sakwe, P. J. Wellmann, and A. Magerl, “On the lattice parameters of silicon carbide,” J. Appl. Phys. 105(3), 033511 (2009).
[CrossRef]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Xiao-Feng, W.

C. Ding-Xiang, Y. Hai-Wu, Z. Wan-Guo, H. Shao-Bo, and W. Xiao-Feng, “Temperature-related performance of Yb3+:YAG disc lasers and optimum design for diamond cooling,” Chin. Phys. 15(12), 2963– (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb: YAG lasers,” Appl. Phys. B 80(6), 635–638 (2005).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).

Chin. Phys. (1)

C. Ding-Xiang, Y. Hai-Wu, Z. Wan-Guo, H. Shao-Bo, and W. Xiao-Feng, “Temperature-related performance of Yb3+:YAG disc lasers and optimum design for diamond cooling,” Chin. Phys. 15(12), 2963– (2006).
[CrossRef]

Electron. Lett. (1)

G. A. Newburgh, M. Dubinskii, and L. D. Merkle, “Silicon carbide face-cooled 4% ceramic Nd:YAG laser,” Electron. Lett. 43(5), 286–288 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

T. Y. Fan, “Heat Generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Giesen and J. Speiser, “Fifteen years of work on thin disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13(3), 598–609 (2007).
[CrossRef]

A. J. Alcock and J. E. Bernard, “Diode-pumped grazing incidence slab lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 3–8 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. E. Hastie, J. M. Hopkins, S. Calvez, C. W. Jeon, D. Burns, R. Abram, E. Riis, A. I. Ferguson, and M. D. Dawson, “0.5-W single transverse-mode operation of an 850-nm diode-pumped surface-emitting semiconductor laser,” IEEE Photon. Technol. Lett. 15(7), 894–896 (2003).
[CrossRef]

J. Appl. Phys (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3,LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys . 98, 103514–1 - 103514–14 (2005).
[CrossRef]

J. Appl. Phys. (3)

M. Stockmeier, R. Müller, S. A. Sakwe, P. J. Wellmann, and A. Magerl, “On the lattice parameters of silicon carbide,” J. Appl. Phys. 105(3), 033511 (2009).
[CrossRef]

Z. Li and R. C. Bradt, “Thermal expansion of the hexagonal (4H) polytype of SiC,” J. Appl. Phys. 60(2), 612–614 (1986).
[CrossRef]

J. Eichler, N. Hodgson, and H. Weber, “Output power and efficiencies of slab laser systems,” J. Appl. Phys. 66(10), 4608–4613 (1989).
[CrossRef]

J. Serb. Chem. Soc. (1)

A. Golubovic, S. Nikolic, R. Gajic, S. Duric, and A. Valcic, “The growth of Nd:YAG single crystals,” J. Serb. Chem. Soc. 67(4), 291–300 (2002).
[CrossRef]

Opt. Commun. (1)

A. Minassian and M. Damzen, “20 W bounce geometry diode-pumped Nd:YVO4 laser system at 1342 nm,” Opt. Commun. 230(1-3), 191–195 (2004).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

E. V. Ivakin, A. V. Sukhadolau, V. G. Ralchenko, and A. V. Vlasov, “Laser-induced transient gratings application for measurement of thermal conductivity of CVD diamond,” Proc. SPIE 5121, 253–258 (2003).
[CrossRef]

Other (7)

http://www.cree.com/products/

V. A. Dmitriev, and M. G. Spencer, “SiC fabrication technology: growth and doping,” in SiC Materials and Devices, Yoon-Soo Park, ed., (Academic Press, London, 1998), pp. 21–63.

V. Hasson, and H.-P. Chou, “Cooling of High Power Laser Systems,” US Patent 6,667,999 (2003).

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high power diode pumped solid state lasers,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE 4968, 106–114 (2003).

H. Lee, H. E. Meissner, and O. R. Meissner, “Stress Relief of Adhesive-Free-Bond (AFB®) Laser Crystal Composites at Elevated and Cryogenic Temperatures,” in 19th Solid State and Diode Laser Technology Review Technical Digest, 2006, Paper: Laser-5.

A. E. Siegman, G. Nemes, and J. Serna, “How to (Maybe) Measure Laser Beam Quality,” in Diode Pumped Solid State Lasers:Applications and Issues, M. W. Dowley, ed., OSA TOPS Vol. 17 (Optical Society of America, Washington, D.C., 1998), pp. 184–199.

A. Tunnermann, H. Zellmer, W. Schone, A. Giesen, and K. Contag, “New Concepts for Diode-Pumped Solid-State Lasers,” in High-Power Diode Lasers, Topics Appl. Phys.78, R. Diehl, ed., (Springer Verlag, Berlin-Heidelberg, 2000), pp. 369–408.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic design of the composite thin-disk-Yb:YAG/SiC-prism gain element. Cross section is not to scale, thin disk layer is shown much thicker in order to better illustrate the angles at which the beam is traversing all relevant surfaces. Red line indicates the propagation path of the intracavity laser beam inside the prism. Side view is shown as seen from the bottom of the prism.

Fig. 2
Fig. 2

Optical layout of the face cooled Yb:YAG/SiC-prism thin disk laser. Shown on the inset is the 936.5 nm pump beam profile (dia. 800 µm in the focal plane of the lens L2 - in air)

Fig. 3
Fig. 3

Q-CW laser performance (output pulse energy at 1030 nm versus absorbed pump pulse energy at 936.5 nm) as a function of the output coupler reflectivity for the face cooled Yb:YAG/SiC-prism thin disk laser. Output coupler reflectivities are color coded as listed on the inset.

Fig. 4
Fig. 4

(a) Beam profile measurement: M2 = 1.5 and (b) a sample of the output beam profile as measured by a Spiricon camera

Fig. 5
Fig. 5

FEA calculation of the surface temperature of a the 400 µm Yb(10%):YAG as pumped by 7.7 W average incident pump power and face cooled by SiC. The Yb:YAG surface shows a maximum temperature excursion of ΔT = 10 °C.

Fig. 6
Fig. 6

Temperature distribution on the surface of the Yb:YAG gain element (7.7 W average pump power) [left], and the corresponding false-color scale [right].

Metrics