Abstract

Using linear reflection spectroscopy and far-field two-photon luminescence (TPL) scanning optical microscopy, we characterize highly enhancing, large-area gold nanostructures formed on porous templates made by anodization of aluminum with either oxalic acid or phosphoric acid. These templates are formed by a newly developed, stepwise technique making use of protective top oxide layers facilitating continuously tunable interpore distances. The upper, porous alumina layers are subsequently removed and the remaining embossed barrier layer is used as template for the sputtered gold, where the density of gold particles covering the sample is adjusted by regulating the sputtering conditions. We observe spatially averaged field intensity enhancement (FE) factors of up to ~5.2102 and bright spots in the TPL-images exhibiting maximum FE factors of up to ~14102 which is the largest estimated FE from any hitherto examined structures with our setup. We relate this large-area massive FE to constructive interference of surface plasmon (SP) polaritons scattered from the densely packed, randomly distributed gold particles and directly correlate this particle density with the strong and broad SP resonances as well as the magnitude of the FE factors. The average FE and the position of high enhancements in the TPL-images are dictated by the excitation wavelength, and the structures could evidently serve as versatile structures facilitating practical molecular sensing.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
    [CrossRef]
  2. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [CrossRef]
  3. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman-spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
    [CrossRef]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  5. G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
    [CrossRef]
  6. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
    [CrossRef]
  7. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
    [CrossRef]
  8. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [CrossRef] [PubMed]
  9. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  10. A. Hohenau, J. Krenn, F. Garcia-Vidal, S. Rodrigo, L. Martin-Moreno, J. Beermann, and S. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
    [CrossRef]
  11. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites,” Phys. Rep. 335(6), 275–371 (2000).
    [CrossRef]
  12. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
    [CrossRef]
  13. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
    [CrossRef] [PubMed]
  14. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
    [CrossRef]
  15. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041 (2003).
    [CrossRef]
  16. J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
    [CrossRef] [PubMed]
  17. A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A, Pure Appl. Opt. 9(9), S366–S371 (2007).
    [CrossRef]
  18. J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15(23), 15234–15241 (2007).
    [CrossRef] [PubMed]
  19. P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
    [CrossRef]
  20. P. Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling inter-particle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
    [CrossRef]
  21. A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
    [CrossRef] [PubMed]
  22. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
    [CrossRef] [PubMed]
  23. H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys. 37(Part 2, No. 11A), L1340–L1342 (1998).
    [CrossRef]
  24. S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
    [CrossRef]
  25. W. Lee, K. Nielsch, and U. Gösele, “Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization,” Nanotechnology 18(47), 475713 (2007).
    [CrossRef]
  26. K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization,” ACS Nano 2(2), 302–310 (2008).
    [CrossRef]
  27. W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
    [CrossRef] [PubMed]
  28. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
    [CrossRef]
  29. C. Sönnichsen, T. Franzl, T. Wilk, G. Von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal Clusters,” N. J. Phys. 4, 931–938 (2002).
    [CrossRef]
  30. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  31. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
    [CrossRef] [PubMed]
  32. A. Pors, O. Albrektsen, S. I. Bozhevolnyi, and M. Willatzen, “The optical properties of a truncated spherical cavity embedded in gold,” Excerpt from the Proceedings of the COMSOL Conference, Milan (2009).
  33. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
    [CrossRef]
  34. J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69(15), 155429 (2004).
    [CrossRef]
  35. J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi 2(12), 3983–3987 (2005).
    [CrossRef]

2010

P. Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling inter-particle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
[CrossRef]

2009

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

2008

K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization,” ACS Nano 2(2), 302–310 (2008).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[CrossRef] [PubMed]

2007

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A, Pure Appl. Opt. 9(9), S366–S371 (2007).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15(23), 15234–15241 (2007).
[CrossRef] [PubMed]

A. Hohenau, J. Krenn, F. Garcia-Vidal, S. Rodrigo, L. Martin-Moreno, J. Beermann, and S. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

W. Lee, K. Nielsch, and U. Gösele, “Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization,” Nanotechnology 18(47), 475713 (2007).
[CrossRef]

A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
[CrossRef] [PubMed]

2006

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[CrossRef]

2005

J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi 2(12), 3983–3987 (2005).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

2004

J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69(15), 155429 (2004).
[CrossRef]

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
[CrossRef]

2003

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041 (2003).
[CrossRef]

2002

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. Von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal Clusters,” N. J. Phys. 4, 931–938 (2002).
[CrossRef]

2000

K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites,” Phys. Rep. 335(6), 275–371 (2000).
[CrossRef]

1999

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

1998

H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys. 37(Part 2, No. 11A), L1340–L1342 (1998).
[CrossRef]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

1995

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

1986

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

1984

G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
[CrossRef]

1977

D. J. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman-spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[CrossRef]

1974

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

1969

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[CrossRef]

1908

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Acimovic, S. S.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Albrecht, M. G.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman-spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[CrossRef]

Albrektsen, O.

P. Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling inter-particle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
[CrossRef]

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

Asoh, H.

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
[CrossRef]

Beermann, J.

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A, Pure Appl. Opt. 9(9), S366–S371 (2007).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15(23), 15234–15241 (2007).
[CrossRef] [PubMed]

A. Hohenau, J. Krenn, F. Garcia-Vidal, S. Rodrigo, L. Martin-Moreno, J. Beermann, and S. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi 2(12), 3983–3987 (2005).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69(15), 155429 (2004).
[CrossRef]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041 (2003).
[CrossRef]

Boltasseva, A.

Boltasseva, A. E.

Bouhelier, A.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041 (2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
[CrossRef]

Bozhevolnyi, S.

A. Hohenau, J. Krenn, F. Garcia-Vidal, S. Rodrigo, L. Martin-Moreno, J. Beermann, and S. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

Bozhevolnyi, S. I.

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16(22), 17302–17309 (2008).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A, Pure Appl. Opt. 9(9), S366–S371 (2007).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15(23), 15234–15241 (2007).
[CrossRef] [PubMed]

J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi 2(12), 3983–3987 (2005).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69(15), 155429 (2004).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Creighton, J. A.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman-spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[CrossRef]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Elam, J. W.

A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
[CrossRef] [PubMed]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[CrossRef]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. Von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal Clusters,” N. J. Phys. 4, 931–938 (2002).
[CrossRef]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Foghmoes, S.

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. Von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal Clusters,” N. J. Phys. 4, 931–938 (2002).
[CrossRef]

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Garcia-Vidal, F.

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A, Pure Appl. Opt. 9(9), S366–S371 (2007).
[CrossRef]

A. Hohenau, J. Krenn, F. Garcia-Vidal, S. Rodrigo, L. Martin-Moreno, J. Beermann, and S. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

González, M. U.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Gösele, U.

K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization,” ACS Nano 2(2), 302–310 (2008).
[CrossRef]

W. Lee, K. Nielsch, and U. Gösele, “Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization,” Nanotechnology 18(47), 475713 (2007).
[CrossRef]

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

Hassing, S.

P. Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling inter-particle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
[CrossRef]

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Hillebrand, R.

K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization,” ACS Nano 2(2), 302–310 (2008).
[CrossRef]

Hohenau, A.

A. Hohenau, J. Krenn, F. Garcia-Vidal, S. Rodrigo, L. Martin-Moreno, J. Beermann, and S. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A, Pure Appl. Opt. 9(9), S366–S371 (2007).
[CrossRef]

Hupp, J. T.

A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
[CrossRef] [PubMed]

Ishiguro, M.

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jeanmaire, D. J.

D. J. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

Ji, R.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Krenn, J.

A. Hohenau, J. Krenn, F. Garcia-Vidal, S. Rodrigo, L. Martin-Moreno, J. Beermann, and S. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

Krenn, J. R.

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A, Pure Appl. Opt. 9(9), S366–S371 (2007).
[CrossRef]

Kreuzer, M. P.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[CrossRef]

Lee, W.

K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization,” ACS Nano 2(2), 302–310 (2008).
[CrossRef]

W. Lee, K. Nielsch, and U. Gösele, “Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization,” Nanotechnology 18(47), 475713 (2007).
[CrossRef]

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

Leite, J. R. R.

G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A, Pure Appl. Opt. 9(9), S366–S371 (2007).
[CrossRef]

A. Hohenau, J. Krenn, F. Garcia-Vidal, S. Rodrigo, L. Martin-Moreno, J. Beermann, and S. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

Martinson, A. B. F.

A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
[CrossRef] [PubMed]

Masuda, H.

H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys. 37(Part 2, No. 11A), L1340–L1342 (1998).
[CrossRef]

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Mooradian, A.

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[CrossRef]

Morgen, P.

P. Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling inter-particle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
[CrossRef]

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Nielsch, K.

K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization,” ACS Nano 2(2), 302–310 (2008).
[CrossRef]

W. Lee, K. Nielsch, and U. Gösele, “Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization,” Nanotechnology 18(47), 475713 (2007).
[CrossRef]

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

Nielsen, P.

P. Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling inter-particle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
[CrossRef]

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

Novikov, S. M.

Novotny, L.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041 (2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

Ono, S.

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
[CrossRef]

Osaka, A.

H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys. 37(Part 2, No. 11A), L1340–L1342 (1998).
[CrossRef]

Pellin, M. J.

A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Quidant, R.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Radko, I. P.

Rasing, T.

G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
[CrossRef]

Rodrigo, S.

A. Hohenau, J. Krenn, F. Garcia-Vidal, S. Rodrigo, L. Martin-Moreno, J. Beermann, and S. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

Rodrigo, S. G.

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A, Pure Appl. Opt. 9(9), S366–S371 (2007).
[CrossRef]

Saito, M.

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
[CrossRef]

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

Sarychev, K.

K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites,” Phys. Rep. 335(6), 275–371 (2000).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Schwirn, K.

K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization,” ACS Nano 2(2), 302–310 (2008).
[CrossRef]

Shalaev, V. M.

K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites,” Phys. Rep. 335(6), 275–371 (2000).
[CrossRef]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
[CrossRef]

Søndergaard, T.

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. Von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal Clusters,” N. J. Phys. 4, 931–938 (2002).
[CrossRef]

Steinhart, M.

K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization,” ACS Nano 2(2), 302–310 (2008).
[CrossRef]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Van Duyne, R. P.

D. J. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

Von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. Von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal Clusters,” N. J. Phys. 4, 931–938 (2002).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. Von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal Clusters,” N. J. Phys. 4, 931–938 (2002).
[CrossRef]

Xie, X. S.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

Yada, K.

H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys. 37(Part 2, No. 11A), L1340–L1342 (1998).
[CrossRef]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

ACS Nano

K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, and U. Gösele, “Self-ordered anodic aluminum oxide formed by H2SO4 hard anodization,” ACS Nano 2(2), 302–310 (2008).
[CrossRef]

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano 3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Ann. Phys.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[CrossRef]

Appl. Phys. Lett.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83(24), 5041 (2003).
[CrossRef]

Chem. Phys. Lett.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy,” Chem. Phys. Lett. 423(1-3), 63–66 (2006).
[CrossRef]

J. Am. Chem. Soc.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman-spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[CrossRef]

J. Electroanal. Chem.

D. J. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

J. Electrochem. Soc.

S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling factor of self-ordering of anodic porous alumina,” J. Electrochem. Soc. 151(8), B473–B478 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film,” J. Opt. A, Pure Appl. Opt. 9(9), S366–S371 (2007).
[CrossRef]

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

J. Phys. Chem. C

P. Nielsen, S. Hassing, O. Albrektsen, S. Foghmoes, and P. Morgen, “Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate,” J. Phys. Chem. C 113(32), 14165–14171 (2009).
[CrossRef]

P. Nielsen, O. Albrektsen, S. Hassing, and P. Morgen, “Controlling inter-particle gaps in self-organizing gold nanoparticles on templates made by a modified hard anodization technique,” J. Phys. Chem. C 114(8), 3459–3465 (2010).
[CrossRef]

J. Phys. Condens. Matter

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14(18), R597–R624 (2002).
[CrossRef]

Jpn. J. Appl. Phys.

H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys. 37(Part 2, No. 11A), L1340–L1342 (1998).
[CrossRef]

N. J. Phys.

C. Sönnichsen, T. Franzl, T. Wilk, G. Von Plessen, and J. Feldmann, “Plasmon resonances in large noble-metal Clusters,” N. J. Phys. 4, 931–938 (2002).
[CrossRef]

Nano Lett.

A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett. 7(8), 2183–2187 (2007).
[CrossRef] [PubMed]

Nanotechnology

W. Lee, K. Nielsch, and U. Gösele, “Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization,” Nanotechnology 18(47), 475713 (2007).
[CrossRef]

Nat. Mater.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[CrossRef] [PubMed]

Opt. Express

Phys. Rep.

K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites,” Phys. Rep. 335(6), 275–371 (2000).
[CrossRef]

Phys. Rev. B

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

A. Hohenau, J. Krenn, F. Garcia-Vidal, S. Rodrigo, L. Martin-Moreno, J. Beermann, and S. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75(8), 085104 (2007).
[CrossRef]

G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30(2), 519–526 (1984).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69(15), 155429 (2004).
[CrossRef]

Phys. Rev. B Condens. Matter

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[CrossRef]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82(20), 4014–4017 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[CrossRef] [PubMed]

Phys. Status Solidi

J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Phys. Status Solidi 2(12), 3983–3987 (2005).
[CrossRef]

Science

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Other

A. Pors, O. Albrektsen, S. I. Bozhevolnyi, and M. Willatzen, “The optical properties of a truncated spherical cavity embedded in gold,” Excerpt from the Proceedings of the COMSOL Conference, Milan (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(1) Annealed and electropolished Al is firstly pre-anodized in oxalic acid followed by anodization with either phosphoric acid or HA in oxalic acid, which forms an Al2O3 pore layer with interpore distances of Δ2 ~500 nm or Δ2 ~270 nm, respectively. (2) This pore layer is etched down to the pore bottom and subsequently the bottom is sputter-coated with gold under different deposition conditions in step 3.

Fig. 2
Fig. 2

Angled-view SEM of a crack in the porous oxide layer made by MA in phosphoric acid, prior to the etching of the substrate in step 2. The barrier oxide (inset with increased magnification of marked rectangle) embosses the Al/Al2O3, leaving scallop shaped structures (Fig. 3) when etched away.

Fig. 3
Fig. 3

SEM of the templates of Al/Al2O3 recorded after removal of the porous oxide by selective etching. (a) Structures made by MA in phosphoric acid with interpore distances of ~500 nm. (b) Structures made by HA in oxalic acid with interpore distances of ~270 nm.

Fig. 4
Fig. 4

Left: SEM micrographs of substrates with differing amounts of gold nanoparticles covering the bottom of the underlying Al/Al2O3 templates formed by sputter-coating the substrates. The fabrication specifications for each substrate are shown at the lower left. Right: Reflection spectra measured from the substrates A to E. The laser excitation wavelengths at 735 nm and 800 nm (dashed, vertical lines) which were applied in the TPL-measurements and the spectral position of the resonances at ~525 nm and ~555 nm (dashed-dotted vertical lines) for sample E and D, respectively, are indicated.

Fig. 5
Fig. 5

Schematic of the experimental setup for TPL-SOM working in reflection with a Ti:sapphire laser, optical isolator (OI), half-wave-plate (λ/2), prism polarizer (P), beam splitter (BS), filters F1 and F2, wavelength selective beam splitter (WSBS), objective lens (L), sample (S) placed on a scanning XY table, analyzer A1, and photo multiplier tubes (PMTs). The exciting photons (red), the reflected FH (red) and the emitted TPL signal (turquoise) is represented by different colors according to approximate wavelength.

Fig. 6
Fig. 6

(a) FH image obtained at 735 nm excitation and 50 µW laser power on substrate B along with (b) corresponding TPL image. The substrate surface has a relatively high and homogeneous density of nanoparticles (Fig. 4) giving a high avg. TPL intensity of ~890 cps.

Fig. 8
Fig. 8

TPL images from measurements conducted at three different wavelengths on substrate C. (a) 735 nm and 50 µW (b) 770 nm and 141 µW (c) 800 nm and 200 µW. The coloured ellipsoids mark characteristic spots in the image making it easier to track the change in TPL intensity at a given spatial position, when the excitation wavelength is changed.

Fig. 7
Fig. 7

TPL image recorded on sample D, which has a much lower density of gold particles relative to A, B and C, and hence a lower average TPL intensity dominated by a few bright spots. The image was obtained at λ = 735 nm and an incident laser power of 100 µW.

Tables (2)

Tables Icon

Table 1 In the left column, the fabricated substrates have been ranked according to the highest (at 50µW) average TPL intensity at 735 nm excitation wavelength. The average TPL intensity and corresponding std. dev. σ are indicated. In the center column, the substrates are ranked according to the estimated density of small particles on the substrate. At the right column the ordering is according to the largest depth in the reflection curve at 735 nm

Tables Icon

Table 2 The maximum TPL intensity collected from the five samples excited at 735 nm and the calculated maximum and average FE at 735 nm and 800 nm excitation. The calculated reduction factor β = α735800 is shown in the rightmost column

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α = S s t r u c t P r e f 2 A r e f S r e f P s t r u c t 2 A s t r u c t ,
α 735 = 67 10 2 c p s 8 m W 2 86 c p s 0.05 m W 2 14 10 2 ,

Metrics