Abstract

A specially designed phase mask embedded in the lens assembly of an imaging system is shown to provide different response in the three major color bands, R, G and B of a detector array. Each channel provides optimal performance for different depth of field regions, such that the three channels jointly provide an imaging system with wide depth of field. The approach is useful in particular for Barcode imagers.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Barkan and J. Swartz, “System design considerations in bar-code laser scanning,” Opt. Eng. 23, 413–420 (1984).
  2. D. Tsi, E. Marom, J. Katz, and J. Swartz, “System analysis of CCD-based Barcode readers,” Appl. Opt. 32(19), 3504–3512 (1993).
    [CrossRef] [PubMed]
  3. W. Chi and N. George, “Electronic imaging using a logarithmic asphere,” Opt. Lett. 26(12), 875–877 (2001).
    [CrossRef]
  4. N. George and W. Chi, “Computational imaging with the logarithmic asphere: theory,” J. Opt.Soc 20(12), 2260–2273 (2003).
    [CrossRef]
  5. K. Chu, N. George, and W. Chi, “Extending the depth of field through unbalanced optical path difference,” Appl. Opt. 47(36), 6895–6903 (2008).
    [CrossRef] [PubMed]
  6. A. Levin, R. Fergus, F. Durand, and T. W. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26(3 Issue 3), 70 (2007) (TOG).
    [CrossRef]
  7. W. T. Cathey and E. R. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41(29), 6080–6092 (2002).
    [CrossRef] [PubMed]
  8. E. Ben-Eliezer, N. Konforti, B. Milgrom, and E. Marom, “An optimal binary amplitude-phase mask for hybrid imaging systems that exhibit high resolution and extended depth of field,” Opt. Express 16(25), 20540–20561 (2008).
    [CrossRef] [PubMed]
  9. B. Milgrom, N. Konforti, M. A. Golub, and E. Marom, “Pupil coding masks for imaging polychromatic scenes with high resolution and extended depth of field,” Opt. Express 18(15), 15569-15584 (2010).
    [CrossRef]
  10. J. Garcia, J. M. Sanchez, X. Orriols, and X. Binefa, “Chromatic aberration and depth extraction,” Proc. IEEE 1, 762–765 (2000).
  11. B. Fishbain, I. A. Ideses, G. Shabat, B. G. Salomon, and L. P. Yaroslavsky, “Superresolution in color videos acquired through turbulent media,” Opt. Lett. 34(5), 587–589 (2009).
    [CrossRef] [PubMed]
  12. O. Bulana, V. Mongab, and G. Sharma, “High capacity color barcodes using dot orientation and color separability,” Proc. SPIE 7254, (2009).
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, Second Edition, New York 1996), pp. 126–151.
  14. B. E. Bayer, “Color imaging array,” US Patent 3,971,065, Issued: 20.07.1976.
  15. User Manuel of uEYE camera, V. 3.33.0 pp.122–124 (2009), from www.ids-imagers.com
  16. Data sheet of Metrologic Model MS-4980 Barcode reader.

2010 (1)

2009 (1)

2008 (2)

2007 (1)

A. Levin, R. Fergus, F. Durand, and T. W. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26(3 Issue 3), 70 (2007) (TOG).
[CrossRef]

2003 (1)

N. George and W. Chi, “Computational imaging with the logarithmic asphere: theory,” J. Opt.Soc 20(12), 2260–2273 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (1)

J. Garcia, J. M. Sanchez, X. Orriols, and X. Binefa, “Chromatic aberration and depth extraction,” Proc. IEEE 1, 762–765 (2000).

1993 (1)

1984 (1)

E. Barkan and J. Swartz, “System design considerations in bar-code laser scanning,” Opt. Eng. 23, 413–420 (1984).

Barkan, E.

E. Barkan and J. Swartz, “System design considerations in bar-code laser scanning,” Opt. Eng. 23, 413–420 (1984).

Ben-Eliezer, E.

Binefa, X.

J. Garcia, J. M. Sanchez, X. Orriols, and X. Binefa, “Chromatic aberration and depth extraction,” Proc. IEEE 1, 762–765 (2000).

Cathey, W. T.

Chi, W.

Chu, K.

Dowski, E. R.

Durand, F.

A. Levin, R. Fergus, F. Durand, and T. W. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26(3 Issue 3), 70 (2007) (TOG).
[CrossRef]

Fergus, R.

A. Levin, R. Fergus, F. Durand, and T. W. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26(3 Issue 3), 70 (2007) (TOG).
[CrossRef]

Fishbain, B.

Freeman, T. W.

A. Levin, R. Fergus, F. Durand, and T. W. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26(3 Issue 3), 70 (2007) (TOG).
[CrossRef]

Garcia, J.

J. Garcia, J. M. Sanchez, X. Orriols, and X. Binefa, “Chromatic aberration and depth extraction,” Proc. IEEE 1, 762–765 (2000).

George, N.

Golub, M. A.

Ideses, I. A.

Katz, J.

Konforti, N.

Levin, A.

A. Levin, R. Fergus, F. Durand, and T. W. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26(3 Issue 3), 70 (2007) (TOG).
[CrossRef]

Marom, E.

Milgrom, B.

Orriols, X.

J. Garcia, J. M. Sanchez, X. Orriols, and X. Binefa, “Chromatic aberration and depth extraction,” Proc. IEEE 1, 762–765 (2000).

Salomon, B. G.

Sanchez, J. M.

J. Garcia, J. M. Sanchez, X. Orriols, and X. Binefa, “Chromatic aberration and depth extraction,” Proc. IEEE 1, 762–765 (2000).

Shabat, G.

Swartz, J.

D. Tsi, E. Marom, J. Katz, and J. Swartz, “System analysis of CCD-based Barcode readers,” Appl. Opt. 32(19), 3504–3512 (1993).
[CrossRef] [PubMed]

E. Barkan and J. Swartz, “System design considerations in bar-code laser scanning,” Opt. Eng. 23, 413–420 (1984).

Tsi, D.

Yaroslavsky, L. P.

ACM Trans. Graph. (1)

A. Levin, R. Fergus, F. Durand, and T. W. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM Trans. Graph. 26(3 Issue 3), 70 (2007) (TOG).
[CrossRef]

Appl. Opt. (3)

J. Opt.Soc (1)

N. George and W. Chi, “Computational imaging with the logarithmic asphere: theory,” J. Opt.Soc 20(12), 2260–2273 (2003).
[CrossRef]

Opt. Eng. (1)

E. Barkan and J. Swartz, “System design considerations in bar-code laser scanning,” Opt. Eng. 23, 413–420 (1984).

Opt. Express (2)

Opt. Lett. (2)

Proc. IEEE (1)

J. Garcia, J. M. Sanchez, X. Orriols, and X. Binefa, “Chromatic aberration and depth extraction,” Proc. IEEE 1, 762–765 (2000).

Other (5)

O. Bulana, V. Mongab, and G. Sharma, “High capacity color barcodes using dot orientation and color separability,” Proc. SPIE 7254, (2009).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, Second Edition, New York 1996), pp. 126–151.

B. E. Bayer, “Color imaging array,” US Patent 3,971,065, Issued: 20.07.1976.

User Manuel of uEYE camera, V. 3.33.0 pp.122–124 (2009), from www.ids-imagers.com

Data sheet of Metrologic Model MS-4980 Barcode reader.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Typical Bayer Matrix, with 3 main colors in the RGGB configuration. In this paper, each color channel is responsible for a specific range of the DOF.

Fig. 2
Fig. 2

Phase levels of the RGB channels.

Fig. 3
Fig. 3

Working Range of a Barcode reader equipped with a phase mask.

Fig. 4
Fig. 4

MTF curves achieved with a Mask-equipped imaging system for different values ofψ, as indicated in the “legend” box: (a) – Red channel, (b) - Green channel, (c) - Blue channel.

Fig. 5
Fig. 5

Simulations of a spoke target acquired with the Mask for 3 different channels, at 3 different defocus conditions. The best acquisition at each defocus condition is the box marked with a color frame.

Fig. 6
Fig. 6

Experimental set-up.

Fig. 7
Fig. 7

Images of a Barcode obtained with a Mask-equipped pupil, as well as by a Clear aperture system at 3 different color channels, for 3 different defocus conditions. The dimensions of the images have been normalized so that they appear in the figure as having same size, for ease of comparison.

Fig. 8
Fig. 8

The non-linear hard clipping function exploited in processing barcode images. X-axis - original gray level and Y-axis - hard clipped levels.

Fig. 9
Fig. 9

Contrast levels vs. spatial frequency for 3 different channels (Red, Green and Blue curves), for 3 different defocus conditions: in-focus ( ψ = 0), ψ 4 ψ 6. The black curve represents the clear aperture results (no mask).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

P ( u , v ) = P ( u , v ) exp [ j ψ ( u 2 + v 2 ) ]
ψ = π D 2 4 λ ( 1 s o b j + 1 s i m g 1 f )
C O F ν c = D 2 λ R g s
ξ = v x ν c , η = v y ν c
v x = u ( D / 2 ) λ R g s , v y = v ( D / 2 ) λ R g s
O T F ( ξ , η ) = Ω P ( u + ξ 2 ; v + η 2 ) P ( u ξ 2 ; v η 2 ) exp [ j ψ 2 ( u ξ + v η ) ]     d u d v Ω | P ( u ; v ) | 2   d u d v
ψ ( 1 λ )
ψ λ 1 ψ λ 2 = λ 2 λ 1
φ λ = 2 π h [ n ( λ ) 1 ] λ
h = λ B n ( λ B ) 1 φ λ B 2 π
ϕ λ 1 ϕ λ 2 = λ 2 λ 1 n ( λ 1 ) 1 n ( λ 2 ) 1 λ 2 λ 1
C O F λ 1 C O F λ 2 = λ 2 λ 1

Metrics