Abstract

We demonstrate highly efficient generation of coherent 420nm light via up-conversion of near-infrared lasers in a hot rubidium vapor cell. By optimizing pump polarizations and frequencies we achieve a single-pass conversion efficiency of 260% per Watt, significantly higher than in previous experiments. A full exploration of the coherent light generation and fluorescence as a function of both pump frequencies reveals that coherent blue light is generated close to 85Rb two-photon resonances, as predicted by theory, but at high vapor pressure is suppressed in spectral regions that do not support phase matching or exhibit single-photon Kerr refraction. Favorable scaling of our current 1mW blue beam power with additional pump power is predicted.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
    [CrossRef]
  2. M. J. Snadden, A. S. Bell, E. Riis, and A. I. Ferguson, “Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
    [CrossRef]
  3. A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218–223 (2006).
    [CrossRef]
  4. M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef] [PubMed]
  5. S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2000).
    [CrossRef]
  6. A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
    [CrossRef]
  7. M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, “Suppression of amplified spontaneous emission by the four-wave mixing process,” Phys. Rev. Lett. 55, 1086–1089 (1985).
    [CrossRef] [PubMed]
  8. S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, “Two-photon resonant four-wave mixing and multiphoton ionization of cesium in a heat-pipe oven,” Phys. Rev. A 34, 1938–1943 (1986).
    [CrossRef] [PubMed]
  9. D. V. Sheludko, Simon C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
    [CrossRef]
  10. H. Ohadi, M. Himsworth, A. Xuereb, and T. Freegarde, “Magneto-optical trapping and background-free imaging for atoms near nanostructured surfaces,” Opt. Express 17, 23003–23009 (2009).
    [CrossRef]
  11. A. I. Lvovsky, S. R. Hartmann, and F. Moshary, “Omnidirectional superfluorescence,” Phys. Rev. Lett. 82, 4420–4423 (1999).
    [CrossRef]
  12. A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, “Efficient frequency up-conversion in resonant coherent media,” Phys. Rev. A 65, 051801 (2002).
    [CrossRef]
  13. T. Meijer, J. D. White, B. Smeets, M. Jeppesen, and R. E. Scholten, “Blue five-level frequency-upconversion system in rubidium,” Opt. Lett. 31, 1002–1004 (2006).
    [CrossRef] [PubMed]
  14. A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford, “Coherent and collimated blue light generated by four-wave mixing in Rb vapour,” Opt. Express 17, 22861–22870 (2009).
    [CrossRef]
  15. Kurucz data, cfa-www.harvard.edu/amp/tools.html.
  16. P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
    [CrossRef]
  17. J. L. Hall, M. Zhu, and P. Buch, “Prospects for using laser-prepared atomic fountains for optical frequency standards applications,” J. Opt. Soc. Am. B 6, 2194–2205 (1989).
    [CrossRef]
  18. G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent interaction in a four-level atomic configuration,” Phys. Rev. A 66, 053409 (2002).
    [CrossRef]
  19. S. Kajari-Schröder, G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent light propagation in atomic vapors,” Phys. Rev. A 75, 013816 (2007).
    [CrossRef]
  20. J. T. Schultz, S. Abend, D. Döring, J. E. Debs, P. A. Altin, J. D. White, N. P. Robins, and J. D. Close, “Coherent 455nm beam production in cesium vapor,” Opt. Lett. 342321–2323 (2009).
    [CrossRef] [PubMed]

2009 (3)

2008 (2)

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
[CrossRef]

D. V. Sheludko, Simon C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

2007 (1)

S. Kajari-Schröder, G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent light propagation in atomic vapors,” Phys. Rev. A 75, 013816 (2007).
[CrossRef]

2006 (2)

A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218–223 (2006).
[CrossRef]

T. Meijer, J. D. White, B. Smeets, M. Jeppesen, and R. E. Scholten, “Blue five-level frequency-upconversion system in rubidium,” Opt. Lett. 31, 1002–1004 (2006).
[CrossRef] [PubMed]

2002 (2)

G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent interaction in a four-level atomic configuration,” Phys. Rev. A 66, 053409 (2002).
[CrossRef]

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, “Efficient frequency up-conversion in resonant coherent media,” Phys. Rev. A 65, 051801 (2002).
[CrossRef]

2000 (1)

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2000).
[CrossRef]

1999 (1)

A. I. Lvovsky, S. R. Hartmann, and F. Moshary, “Omnidirectional superfluorescence,” Phys. Rev. Lett. 82, 4420–4423 (1999).
[CrossRef]

1998 (1)

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

1996 (1)

M. J. Snadden, A. S. Bell, E. Riis, and A. I. Ferguson, “Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
[CrossRef]

1995 (1)

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

1993 (1)

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

1989 (1)

1986 (1)

S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, “Two-photon resonant four-wave mixing and multiphoton ionization of cesium in a heat-pipe oven,” Phys. Rev. A 34, 1938–1943 (1986).
[CrossRef] [PubMed]

1985 (1)

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, “Suppression of amplified spontaneous emission by the four-wave mixing process,” Phys. Rev. Lett. 55, 1086–1089 (1985).
[CrossRef] [PubMed]

Abend, S.

Adams, C. S.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
[CrossRef]

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2000).
[CrossRef]

Akulshin, A. M.

Altin, P. A.

Anderson, R.

D. V. Sheludko, Simon C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Arnold, A. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Badger, S. D.

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2000).
[CrossRef]

Bell, A. S.

M. J. Snadden, A. S. Bell, E. Riis, and A. I. Ferguson, “Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
[CrossRef]

Bell, Simon C.

D. V. Sheludko, Simon C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Biraben, F.

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Boshier, M. G.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Boyd, R. W.

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, “Suppression of amplified spontaneous emission by the four-wave mixing process,” Phys. Rev. Lett. 55, 1086–1089 (1985).
[CrossRef] [PubMed]

Buch, P.

Carlson, E. J.

A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218–223 (2006).
[CrossRef]

Close, J. D.

Compton, R. N.

S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, “Two-photon resonant four-wave mixing and multiphoton ionization of cesium in a heat-pipe oven,” Phys. Rev. A 34, 1938–1943 (1986).
[CrossRef] [PubMed]

Debs, J. E.

Döring, D.

Felder, R.

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Ferguson, A. I.

M. J. Snadden, A. S. Bell, E. Riis, and A. I. Ferguson, “Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
[CrossRef]

Franke-Arnold, S.

S. Kajari-Schröder, G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent light propagation in atomic vapors,” Phys. Rev. A 75, 013816 (2007).
[CrossRef]

G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent interaction in a four-level atomic configuration,” Phys. Rev. A 66, 053409 (2002).
[CrossRef]

Freegarde, T.

Gauthier, D. J.

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, “Suppression of amplified spontaneous emission by the four-wave mixing process,” Phys. Rev. Lett. 55, 1086–1089 (1985).
[CrossRef] [PubMed]

Ge, C.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
[CrossRef]

Gea-Banacloche, J.

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Hall, J. L.

Hamadani, S. M.

S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, “Two-photon resonant four-wave mixing and multiphoton ionization of cesium in a heat-pipe oven,” Phys. Rev. A 34, 1938–1943 (1986).
[CrossRef] [PubMed]

Hannaford, P.

Hartmann, S. R.

A. I. Lvovsky, S. R. Hartmann, and F. Moshary, “Omnidirectional superfluorescence,” Phys. Rev. Lett. 82, 4420–4423 (1999).
[CrossRef]

Himsworth, M.

Hofmann, C. S.

D. V. Sheludko, Simon C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Hollberg, L.

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, “Efficient frequency up-conversion in resonant coherent media,” Phys. Rev. A 65, 051801 (2002).
[CrossRef]

Hughes, I. G.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
[CrossRef]

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2000).
[CrossRef]

Jeppesen, M.

Jin, S. Z.

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Kajari-Schröder, S.

S. Kajari-Schröder, G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent light propagation in atomic vapors,” Phys. Rev. A 75, 013816 (2007).
[CrossRef]

Li, Y. Q.

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Lukin, M. D.

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, “Efficient frequency up-conversion in resonant coherent media,” Phys. Rev. A 65, 051801 (2002).
[CrossRef]

Lvovsky, A. I.

A. I. Lvovsky, S. R. Hartmann, and F. Moshary, “Omnidirectional superfluorescence,” Phys. Rev. Lett. 82, 4420–4423 (1999).
[CrossRef]

Malcuit, M. S.

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, “Suppression of amplified spontaneous emission by the four-wave mixing process,” Phys. Rev. Lett. 55, 1086–1089 (1985).
[CrossRef] [PubMed]

Mayer, S. K.

A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218–223 (2006).
[CrossRef]

McLean, R. J.

Meijer, T.

Millerioux, Y.

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Morigi, G.

S. Kajari-Schröder, G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent light propagation in atomic vapors,” Phys. Rev. A 75, 013816 (2007).
[CrossRef]

G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent interaction in a four-level atomic configuration,” Phys. Rev. A 66, 053409 (2002).
[CrossRef]

Moshary, F.

A. I. Lvovsky, S. R. Hartmann, and F. Moshary, “Omnidirectional superfluorescence,” Phys. Rev. Lett. 82, 4420–4423 (1999).
[CrossRef]

Nez, F.

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

Ohadi, H.

Olson, A. J.

A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218–223 (2006).
[CrossRef]

Oppo, G.-L.

S. Kajari-Schröder, G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent light propagation in atomic vapors,” Phys. Rev. A 75, 013816 (2007).
[CrossRef]

G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent interaction in a four-level atomic configuration,” Phys. Rev. A 66, 053409 (2002).
[CrossRef]

Pindzola, M. S.

S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, “Two-photon resonant four-wave mixing and multiphoton ionization of cesium in a heat-pipe oven,” Phys. Rev. A 34, 1938–1943 (1986).
[CrossRef] [PubMed]

Riis, E.

M. J. Snadden, A. S. Bell, E. Riis, and A. I. Ferguson, “Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
[CrossRef]

Robins, N. P.

Scholten, R. E.

D. V. Sheludko, Simon C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

T. Meijer, J. D. White, B. Smeets, M. Jeppesen, and R. E. Scholten, “Blue five-level frequency-upconversion system in rubidium,” Opt. Lett. 31, 1002–1004 (2006).
[CrossRef] [PubMed]

Schultz, J. T.

Scully, M. O.

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, “Efficient frequency up-conversion in resonant coherent media,” Phys. Rev. A 65, 051801 (2002).
[CrossRef]

Sheludko, D. V.

D. V. Sheludko, Simon C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Siddons, P.

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
[CrossRef]

Sidorov, A. I.

Smeets, B.

Snadden, M. J.

M. J. Snadden, A. S. Bell, E. Riis, and A. I. Ferguson, “Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
[CrossRef]

Stockdale, J. A. D.

S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, “Two-photon resonant four-wave mixing and multiphoton ionization of cesium in a heat-pipe oven,” Phys. Rev. A 34, 1938–1943 (1986).
[CrossRef] [PubMed]

Vredenbregt, E. J. D.

D. V. Sheludko, Simon C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

White, J. D.

Wilson, J. S.

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Xiao, M.

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

Xuereb, A.

Zhu, M.

Zibrov, A. S.

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, “Efficient frequency up-conversion in resonant coherent media,” Phys. Rev. A 65, 051801 (2002).
[CrossRef]

Am. J. Phys. (1)

A. J. Olson, E. J. Carlson, and S. K. Mayer, “Two-photon spectroscopy of rubidium using a grating-feedback diode laser,” Am. J. Phys. 74, 218–223 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (2)

P. Siddons, C. S. Adams, C. Ge, and I. G. Hughes, “Absolute absorption on rubidium D lines: comparison between theory and experiment,” J. Phys. B 41, 155004 (2008).
[CrossRef]

S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2000).
[CrossRef]

Opt. Commun. (2)

F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination of the hyperfine components of the 5S1/2–5D3/2 two-photon transitions in rubidium,” Opt. Commun. 102, 432–438 (1993).
[CrossRef]

M. J. Snadden, A. S. Bell, E. Riis, and A. I. Ferguson, “Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (5)

G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent interaction in a four-level atomic configuration,” Phys. Rev. A 66, 053409 (2002).
[CrossRef]

S. Kajari-Schröder, G. Morigi, S. Franke-Arnold, and G.-L. Oppo, “Phase-dependent light propagation in atomic vapors,” Phys. Rev. A 75, 013816 (2007).
[CrossRef]

A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, “Efficient frequency up-conversion in resonant coherent media,” Phys. Rev. A 65, 051801 (2002).
[CrossRef]

S. M. Hamadani, J. A. D. Stockdale, R. N. Compton, and M. S. Pindzola, “Two-photon resonant four-wave mixing and multiphoton ionization of cesium in a heat-pipe oven,” Phys. Rev. A 34, 1938–1943 (1986).
[CrossRef] [PubMed]

D. V. Sheludko, Simon C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Phys. Rev. Lett. (3)

A. I. Lvovsky, S. R. Hartmann, and F. Moshary, “Omnidirectional superfluorescence,” Phys. Rev. Lett. 82, 4420–4423 (1999).
[CrossRef]

M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef] [PubMed]

M. S. Malcuit, D. J. Gauthier, and R. W. Boyd, “Suppression of amplified spontaneous emission by the four-wave mixing process,” Phys. Rev. Lett. 55, 1086–1089 (1985).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Other (1)

Kurucz data, cfa-www.harvard.edu/amp/tools.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

a) The Rb energy level scheme. b) Relevant Rb transition parameters [15]. c) Experimental image showing how co-propagating focussed 780 and 776nm laser beams create a coherent 420nm (and invisible 5.2µm) beam.

Fig. 2.
Fig. 2.

a) Experimental schematic, abbreviations used are: PD (photodiode), VC (vapor cell) N/PBS (non/polarizing beamsplitter) and ECDL (external cavity diode laser). b) Power in the coherent 420nm beam as a function of 780nm (red) and 776nm (black) input power. For each trace the power of the other input beam was maximal and detunings and polarization were optimized, see text.

Fig. 3.
Fig. 3.

Relative blue fluorescence (top row) and blue beam (bottom row) power as a function of 780 and 776nm light detuning. Theoretical simulations of the 5-level Bloch equations are shown in a) and b). Graph a) shows the Doppler-broadened population in the 6P level corresponding to blue fluorescence. Fig. b) shows the Doppler-broadened coherences between ground and the 6P level, corresponding to coherent blue light generation. The blue coherences are adjusted to account for Kerr lensing and absorption of the 780nm pump beam. Graphs c) and d) show measurements at a cell temperature of 90°C, and e) and f) at 120°C. At low pressure, coherent light is generated over a range of detunings at twophoton resonance. At high pressure Kerr-lensing of the pump beams and phase-matching become more pronounced, restricting blue light generation to a narrow frequency window. The backdrops show 780nm saturated absorption in a cold cell.

Fig. 4.
Fig. 4.

Coherent and fluorescent blue light as a function of Δ780 for Δ776 = −1.6GHz. Graph a) shows theoretical blue fluorescence (420F, blue) as well as transmission of the 776nm (776T, black) pump beam, including Doppler-broadening. Graph b) shows the blue beam coherences (420B, blue), as well as the Doppler-broadened theoretical transmission (780T, red) and Kerr-lensing ( 780 n 2 Δ n 780 Δ I 780 intensity-dependent refraction, black) of the 780nm beam, which favors the coherence at 1.6GHz. Measurements of blue fluorescence accompanied by 776nm absorption c), and blue beam generation d) are shown for different input polarizations: counter-circular (red), crossed-linear (green), co-linear (blue) and co-circular (purple). Vertical lines indicate 85Rb and 87Rb 780nm resonances.

Metrics