Abstract

Coordinate transformation is applied to design an all-dielectric device for Extraordinary Transmission (ET) in a single sub-wavelength slit. The proposed device has a broadband feature and can be applied from microwave to visible frequency bands. Finite-Difference Time-Domain (FDTD) simulations are used to verify the device’s performance. The results show that significantly increased transmission is achieved through the sub-wavelength aperture from 4 GHz to 8 GHz when the device is applied. In contrast with previously reported systems, the frequency sensitivity of the new device is very low.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999).
    [CrossRef]
  3. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef] [PubMed]
  4. F. J. García-de-Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [CrossRef]
  5. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
    [CrossRef]
  6. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297 (5582), 820–822 (2002).
    [CrossRef]
  7. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  8. L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
    [CrossRef]
  9. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [CrossRef] [PubMed]
  10. K. Aydin, A. O. Cakmak, L. Sahin, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
    [CrossRef] [PubMed]
  11. A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” App. Phys. Lett. 95, 052103 (2009).
    [CrossRef]
  12. F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure Appl. Opt. 11, 114029 (2009).
    [CrossRef]
  13. F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission,” Opt. Express 18 (7), 6740–6754 (2010).
    [CrossRef]
  14. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  15. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [CrossRef] [PubMed]
  16. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14 (21), 9794–9804 (2006).
    [CrossRef]
  17. J. B. Pendry and J. Li, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101 (20), 203901 (2008).
  18. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76 (25), 4773–4776 (1996).
    [CrossRef]
  19. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47 (11), 2075–2084 (1999).
    [CrossRef]
  20. Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16 (9), 6717–6730 (2008).
    [CrossRef]
  21. C. Argyropoulos, Y. Zhao, and Y. Hao, “A Radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57 (5), 1432–1441 (2009).
    [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (3rd edition) (Artech House, Boston, 2005).

2010 (2)

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission,” Opt. Express 18 (7), 6740–6754 (2010).
[CrossRef]

2009 (5)

K. Aydin, A. O. Cakmak, L. Sahin, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” App. Phys. Lett. 95, 052103 (2009).
[CrossRef]

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure Appl. Opt. 11, 114029 (2009).
[CrossRef]

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
[CrossRef]

C. Argyropoulos, Y. Zhao, and Y. Hao, “A Radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57 (5), 1432–1441 (2009).
[CrossRef]

2008 (2)

Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16 (9), 6717–6730 (2008).
[CrossRef]

J. B. Pendry and J. Li, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101 (20), 203901 (2008).

2007 (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

F. J. García-de-Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14 (21), 9794–9804 (2006).
[CrossRef]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

2003 (1)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297 (5582), 820–822 (2002).
[CrossRef]

1999 (2)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47 (11), 2075–2084 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76 (25), 4773–4776 (1996).
[CrossRef]

Argyropoulos, C.

C. Argyropoulos, Y. Zhao, and Y. Hao, “A Radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57 (5), 1432–1441 (2009).
[CrossRef]

Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16 (9), 6717–6730 (2008).
[CrossRef]

Aydin, K.

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” App. Phys. Lett. 95, 052103 (2009).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

Bilotti, F.

K. Aydin, A. O. Cakmak, L. Sahin, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” App. Phys. Lett. 95, 052103 (2009).
[CrossRef]

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure Appl. Opt. 11, 114029 (2009).
[CrossRef]

Cakmak, A. O.

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” App. Phys. Lett. 95, 052103 (2009).
[CrossRef]

K. Aydin, A. O. Cakmak, L. Sahin, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

Colak, E.

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” App. Phys. Lett. 95, 052103 (2009).
[CrossRef]

de León-Pérez, F.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297 (5582), 820–822 (2002).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297 (5582), 820–822 (2002).
[CrossRef]

Dunbar, L. A.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Ebbesen, T. W.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297 (5582), 820–822 (2002).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Eckert, R.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
[CrossRef]

García-de-Abajo, F. J.

F. J. García-de-Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

García-Vidal, F. J.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297 (5582), 820–822 (2002).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Grenet, E.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Guillaumée, M.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (3rd edition) (Artech House, Boston, 2005).

Hao, Y.

C. Argyropoulos, Y. Zhao, and Y. Hao, “A Radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57 (5), 1432–1441 (2009).
[CrossRef]

Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16 (9), 6717–6730 (2008).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47 (11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76 (25), 4773–4776 (1996).
[CrossRef]

Kuipers, L.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

Lezec, H. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297 (5582), 820–822 (2002).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, J.

J. B. Pendry and J. Li, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101 (20), 203901 (2008).

Li, Z.

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” App. Phys. Lett. 95, 052103 (2009).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297 (5582), 820–822 (2002).
[CrossRef]

López-Tejeira, F.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Martin-Moreno, L.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Martín-Moreno, L.

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297 (5582), 820–822 (2002).
[CrossRef]

Nieto-Vesperinas, M.

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission,” Opt. Express 18 (7), 6740–6754 (2010).
[CrossRef]

Ozbay, E.

K. Aydin, A. O. Cakmak, L. Sahin, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” App. Phys. Lett. 95, 052103 (2009).
[CrossRef]

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure Appl. Opt. 11, 114029 (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry and J. Li, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101 (20), 203901 (2008).

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14 (21), 9794–9804 (2006).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47 (11), 2075–2084 (1999).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76 (25), 4773–4776 (1996).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47 (11), 2075–2084 (1999).
[CrossRef]

Sahin, L.

K. Aydin, A. O. Cakmak, L. Sahin, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

Santschi, C.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Schurig, D.

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14 (21), 9794–9804 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Scorrano, L.

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure Appl. Opt. 11, 114029 (2009).
[CrossRef]

Smith, D. R.

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14 (21), 9794–9804 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Stanley, R. P.

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47 (11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76 (25), 4773–4776 (1996).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (3rd edition) (Artech House, Boston, 2005).

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Valdivia-Valero, F. J.

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission,” Opt. Express 18 (7), 6740–6754 (2010).
[CrossRef]

Vegni, L.

K. Aydin, A. O. Cakmak, L. Sahin, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure Appl. Opt. 11, 114029 (2009).
[CrossRef]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” App. Phys. Lett. 95, 052103 (2009).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76 (25), 4773–4776 (1996).
[CrossRef]

Zhao, Y.

C. Argyropoulos, Y. Zhao, and Y. Hao, “A Radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57 (5), 1432–1441 (2009).
[CrossRef]

Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16 (9), 6717–6730 (2008).
[CrossRef]

App. Phys. Lett. (2)

L. A. Dunbar, M. Guillaumée, F. de León-Pérez, C. Santschi, E. Grenet, R. Eckert, F. López-Tejeira, F. J. García-Vidal, L. Martin-Moreno, and R. P. Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” App. Phys. Lett. 95, 011113 (2009).
[CrossRef]

A. O. Cakmak, K. Aydin, E. Colak, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay, “Enhanced transmission through a subwavelength aperture using metamaterials,” App. Phys. Lett. 95, 052103 (2009).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

C. Argyropoulos, Y. Zhao, and Y. Hao, “A Radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57 (5), 1432–1441 (2009).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47 (11), 2075–2084 (1999).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

F. Bilotti, L. Scorrano, E. Ozbay, and L. Vegni, “Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials,” J. Opt. A: Pure Appl. Opt. 11, 114029 (2009).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Opt. Express (3)

F. J. Valdivia-Valero and M. Nieto-Vesperinas, “Resonance excitation and light concentration in sets of dielectric nanocylinders in front of a subwavelength aperture. Effects on extraordinary transmission,” Opt. Express 18 (7), 6740–6754 (2010).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14 (21), 9794–9804 (2006).
[CrossRef]

Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16 (9), 6717–6730 (2008).
[CrossRef]

Phys. Rev. Lett. (5)

J. B. Pendry and J. Li, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101 (20), 203901 (2008).

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76 (25), 4773–4776 (1996).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

K. Aydin, A. O. Cakmak, L. Sahin, F. Bilotti, L. Vegni, and E. Ozbay, “Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture,” Phys. Rev. Lett. 102, 013904 (2009).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83 (14), 2845–2848 (1999).
[CrossRef]

Rev. Mod. Phys. (2)

F. J. García-de-Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010).
[CrossRef]

Science (4)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297 (5582), 820–822 (2002).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

Other (1)

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (3rd edition) (Artech House, Boston, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) The space in the Cartesian coordinates. (b) The space in the distorted coordinates.

Fig. 2.
Fig. 2.

The relative permittivity map of the distorted space. The dashed black line outlines the profile of the enhancement device.

Fig. 3.
Fig. 3.

The amplitudes of the electric field in different cases. (a) The incident plane wave illuminates a PEC plate with a 0.2λ 0 wide slit. (b) The incident plane wave illuminates a PEC plate with a 1.6λ 0 wide slit. (c) The incident plane wave illuminates the above mentioned sub-wavelength slit when the proposed enhancement device is applied in the black lines. (d) The incident plane wave illuminates the sub-wavelength slit after crossing a focusing lens with its focal point located on the slit. (e) The incident plane wave illuminates a PEC plate with a pair of enhancement devices at both sides of the sub-wavelength slit. (f) The permittivity map around the slit in case (e). The map is symmetric.

Fig. 4.
Fig. 4.

(a) The radiation pattern recorded at the semicircle 3λ 0 away from the center of the slit. (b) The radiation pattern recorded at the semicircle 6λ 0 away from the center of the slit.

Fig. 5.
Fig. 5.

The energy distribution along the propagation direction. The propagating distance is recorded in terms of the wavelength.

Fig. 6.
Fig. 6.

Integrate the Poynting vector at the lower surface of the PEC plate over time to get the transmitted energy.

Fig. 7.
Fig. 7.

(a) The average amplitude of Ez field recorded at the line 0.1λ 0 (at 6 GHz) away behind the PEC plate. (b) The average amplitude of Ez field recorded at the line 3λ 0 (at 6 GHz) away behind the PEC plate.

Fig. 8.
Fig. 8.

(a) Amplifications at the line 0.1λ 0 (at 6 GHz) away behind the PEC plate over the frequency spectrum. (b) Amplifications at the line 3λ 0 (at 6 GHz) away behind the PEC plate over the frequency spectrum. The amplitude of electric field is normalized at each frequency point by the value of the green curve (which represents the transmitted field through the sub-wavelength slit) to represent the amplification factor.

Tables (1)

Tables Icon

Table 1. Values of the transmitted energy in different cases

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε = = J ε = J T det ( J ) , μ = = J μ = J T det ( J )
J = ( x x x y 0 y x y y 0 0 0 1 )

Metrics