Abstract

High-order modulation formats and advanced error correcting codes (ECC) are two promising techniques for improving the performance of ultrahigh-speed optical transport networks. In this paper, we present record receiver sensitivity for 107 Gb/s CO-OFDM transmission via constellation expansion to 16-QAM and rate-1/2 LDPC coding. We also show the single-channel transmission of a 428-Gb/s CO-OFDM signal over 960-km standard-single-mode-fiber (SSMF) without Raman amplification.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Yang, Y. Ma, and W. Shieh, “107 Gb/s coherent optical OFDM reception using orthogonal band multiplexing,” in Proc. Optical Fiber Commun. Conf., 2008, Paper PDP 7.
  2. S.L. Jansen, I. Morita, H. Tanaka, “10×121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1,000 km of SSMF,” in Proc. Optical Fiber Commun. Conf., 2008, Paper PDP 2.
  3. E. Yamada, A. Sano, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, K. Yonenaga, Y. Miyamoto, K. Ishihara, Y. Takatori, T. Yamada, and H.Yamazaki, “1Tb/s (111Gb/s/ch × 10ch) no-guard-interval OOFDM transmission over 2100 km DSF,” OECC/ACOFT Conf. 2008, paper PDP6.
  4. S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
    [CrossRef] [PubMed]
  5. H. Sun, K.-T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
    [CrossRef] [PubMed]
  6. H. Takahashi, A. Al Amin, S.L Jansen, I. Morita, and H. Tanaka, “DWDM transmission with 7.0-bit/(s1Hz) spectral efficiency using 8×65.1-Gbit/s coherent PDM-OFDM signals,” in Proc. Optical Fiber Commun. Conf. 2009, PDPB7.
  7. X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightwave Technol. 26(10), 1309–1316 (2008).
    [CrossRef]
  8. R. Dischler, and F. Buchali, “Transmission of 1.2 Tb/s continuous waveband PDM‐OFDM‐FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” in Proc. Optical Fiber Commun. Conf. 2009, PDP C2.
  9. S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” ECOC’09, post-deadline paper PD2.6.
  10. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  11. S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Commun. Lett. 5(2), 58–60 (2001).
    [CrossRef]
  12. I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra high-speed optical transmission,” IEEE/OSA, J. Lightwave Technol. 25(11), 3619–3625 (2007).
    [CrossRef]
  13. I. B. Djordjevic, and H. G. Batshon, Lei Xu and T. Wang, “Coded polarization-multiplexed iterative polar modulation (PM-IPM) for beyond 400 Gb/s serial optical transmission,” in Proc. OFC/NFOEC 2010, Paper No. OMK2, San Diego, CA, March 21–25, 2010.
  14. I. B. Djordjevic and B. Vasic, “Multilevel Coding in M-ary DPSK/Differential QAM High-Speed Optical Transmission with Direct Detection,” IEEE/OSA J, Lightw. Technol. 24(1), 420–428 (2006).
    [CrossRef]
  15. M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary Quasi-Cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett. 22(6), 434–436 (2010).
    [CrossRef]
  16. I. B. Djordjevic, L. Xu, and T. Wang, “Beyond 100 Gb/s optical transmission based on polarization multiplexed coded-OFDM with coherent detection,” J. Opt. Commun. Netw. 1(1), 50–56 (2009).
    [CrossRef]
  17. I. B. Djordjevic, M. Arabaci, and L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009).
    [CrossRef]
  18. T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
    [CrossRef]
  19. T. Mizuochi, “Next Generation FEC for optical communication,” Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on, vol., no., pp.1–33, 24–28 Feb. 2008.
  20. G. Ungerboeck, “Trellis-coded modulation with redundant signal sets Part I&II: Introduction,” Communications Magazine, IEEE 25(2), 5–11 (1987).
    [CrossRef]
  21. H. Bülow, F. Buchali, G. Thielecke, ”Optical Trellis-coded modulation ”, in Proc. Optical Fiber Commun. Conf. 2004, WM5.
  22. X. Liu, Q. Yang, S. Chandrasekhar, W. Shieh, Y. K. Chen “Transmission of 44-Gb/s coherent optical OFDM signal with Trellis-cded 32-QAM subcarrier modulation”, in Proc. Optical Fiber Commun. Conf. 2010, OMR3.
  23. D. J. C. Mackay, Ldpc database. Available at http://www.inference.phy.cam.ac.uk/mackay/codes/data.html .
  24. A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “FEC in optical communications - A tutorial overview on the evolution of architectures and the future prospects of outband and inband FEC for optical communications,” IEEE Circuits Devices Mag. 22(6), 79–86 (2006).
    [CrossRef]
  25. R. G. Gallager, Low Density Parity Check Codes, MIT Press, Cambridge, Mass., 1963.
  26. D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett. 32(18), 1645–1646 (1996).
    [CrossRef]
  27. S. J. Johnson, S. R. Weller, “Low-density parity-check codes: design and decoding”, Wiley Encyclopedia of Telecommunications, John Wiley and Sons, 2003.
  28. Bernhard M. J. Leiner, “LDPC codes - a Brief Tutorial,” April 2005.

2010 (1)

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary Quasi-Cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett. 22(6), 434–436 (2010).
[CrossRef]

2009 (4)

2008 (2)

2007 (2)

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra high-speed optical transmission,” IEEE/OSA, J. Lightwave Technol. 25(11), 3619–3625 (2007).
[CrossRef]

S. J. Savory, G. Gavioli, R. I. Killey, and P. Bayvel, “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120–2126 (2007).
[CrossRef] [PubMed]

2006 (2)

I. B. Djordjevic and B. Vasic, “Multilevel Coding in M-ary DPSK/Differential QAM High-Speed Optical Transmission with Direct Detection,” IEEE/OSA J, Lightw. Technol. 24(1), 420–428 (2006).
[CrossRef]

A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “FEC in optical communications - A tutorial overview on the evolution of architectures and the future prospects of outband and inband FEC for optical communications,” IEEE Circuits Devices Mag. 22(6), 79–86 (2006).
[CrossRef]

2001 (1)

S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Commun. Lett. 5(2), 58–60 (2001).
[CrossRef]

1996 (1)

D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett. 32(18), 1645–1646 (1996).
[CrossRef]

1987 (1)

G. Ungerboeck, “Trellis-coded modulation with redundant signal sets Part I&II: Introduction,” Communications Magazine, IEEE 25(2), 5–11 (1987).
[CrossRef]

Arabaci, M.

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary Quasi-Cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett. 22(6), 434–436 (2010).
[CrossRef]

I. B. Djordjevic, M. Arabaci, and L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009).
[CrossRef]

Bayvel, P.

Chen, S.

Chung, S. Y.

S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Commun. Lett. 5(2), 58–60 (2001).
[CrossRef]

Cvijetic, M.

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra high-speed optical transmission,” IEEE/OSA, J. Lightwave Technol. 25(11), 3619–3625 (2007).
[CrossRef]

Djordjevic, I. B.

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary Quasi-Cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett. 22(6), 434–436 (2010).
[CrossRef]

I. B. Djordjevic, M. Arabaci, and L. Minkov, “Next generation FEC for high-capacity communication in optical transport networks,” J. Lightwave Technol. 27(16), 3518–3530 (2009).
[CrossRef]

I. B. Djordjevic, L. Xu, and T. Wang, “Beyond 100 Gb/s optical transmission based on polarization multiplexed coded-OFDM with coherent detection,” J. Opt. Commun. Netw. 1(1), 50–56 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra high-speed optical transmission,” IEEE/OSA, J. Lightwave Technol. 25(11), 3619–3625 (2007).
[CrossRef]

I. B. Djordjevic and B. Vasic, “Multilevel Coding in M-ary DPSK/Differential QAM High-Speed Optical Transmission with Direct Detection,” IEEE/OSA J, Lightw. Technol. 24(1), 420–428 (2006).
[CrossRef]

Forney, G. D.

S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Commun. Lett. 5(2), 58–60 (2001).
[CrossRef]

Gavioli, G.

Ichikawa, T.

T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
[CrossRef]

Inoue, T.

T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
[CrossRef]

Kametani, S.

T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
[CrossRef]

Killey, R. I.

Kobayashi, T.

T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
[CrossRef]

Konishi, Y.

T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
[CrossRef]

Koufopavlou, O.

A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “FEC in optical communications - A tutorial overview on the evolution of architectures and the future prospects of outband and inband FEC for optical communications,” IEEE Circuits Devices Mag. 22(6), 79–86 (2006).
[CrossRef]

Kubo, K.

T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
[CrossRef]

Ma, Y.

MacKay, D. J. C.

D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett. 32(18), 1645–1646 (1996).
[CrossRef]

Marcoccia, R. M.

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary Quasi-Cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett. 22(6), 434–436 (2010).
[CrossRef]

Minkov, L.

Miyata, Y.

T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
[CrossRef]

Mizuochi, T.

T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
[CrossRef]

Neal, R. M.

D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett. 32(18), 1645–1646 (1996).
[CrossRef]

Onohara, K.

T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
[CrossRef]

Richardson, T. J.

S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Commun. Lett. 5(2), 58–60 (2001).
[CrossRef]

Roberts, K.

Saunders, R.

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary Quasi-Cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett. 22(6), 434–436 (2010).
[CrossRef]

Savory, S. J.

Shieh, W.

Sugihara, T.

T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
[CrossRef]

Sun, H.

Tang, Y.

Tomkos, I.

A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “FEC in optical communications - A tutorial overview on the evolution of architectures and the future prospects of outband and inband FEC for optical communications,” IEEE Circuits Devices Mag. 22(6), 79–86 (2006).
[CrossRef]

Tychopoulos, A.

A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “FEC in optical communications - A tutorial overview on the evolution of architectures and the future prospects of outband and inband FEC for optical communications,” IEEE Circuits Devices Mag. 22(6), 79–86 (2006).
[CrossRef]

Ungerboeck, G.

G. Ungerboeck, “Trellis-coded modulation with redundant signal sets Part I&II: Introduction,” Communications Magazine, IEEE 25(2), 5–11 (1987).
[CrossRef]

Urbanke, R.

S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Commun. Lett. 5(2), 58–60 (2001).
[CrossRef]

Vasic, B.

I. B. Djordjevic and B. Vasic, “Multilevel Coding in M-ary DPSK/Differential QAM High-Speed Optical Transmission with Direct Detection,” IEEE/OSA J, Lightw. Technol. 24(1), 420–428 (2006).
[CrossRef]

Wang, T.

I. B. Djordjevic, L. Xu, and T. Wang, “Beyond 100 Gb/s optical transmission based on polarization multiplexed coded-OFDM with coherent detection,” J. Opt. Commun. Netw. 1(1), 50–56 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra high-speed optical transmission,” IEEE/OSA, J. Lightwave Technol. 25(11), 3619–3625 (2007).
[CrossRef]

Wu, K.-T.

Xu, L.

I. B. Djordjevic, L. Xu, and T. Wang, “Beyond 100 Gb/s optical transmission based on polarization multiplexed coded-OFDM with coherent detection,” J. Opt. Commun. Netw. 1(1), 50–56 (2009).
[CrossRef]

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra high-speed optical transmission,” IEEE/OSA, J. Lightwave Technol. 25(11), 3619–3625 (2007).
[CrossRef]

Yang, Q.

Yi, X.

Yoshida, H.

T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
[CrossRef]

Communications Magazine, IEEE (1)

G. Ungerboeck, “Trellis-coded modulation with redundant signal sets Part I&II: Introduction,” Communications Magazine, IEEE 25(2), 5–11 (1987).
[CrossRef]

Electron. Lett. (1)

D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electron. Lett. 32(18), 1645–1646 (1996).
[CrossRef]

IEEE Circuits Devices Mag. (1)

A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “FEC in optical communications - A tutorial overview on the evolution of architectures and the future prospects of outband and inband FEC for optical communications,” IEEE Circuits Devices Mag. 22(6), 79–86 (2006).
[CrossRef]

IEEE Commun. Lett. (1)

S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Commun. Lett. 5(2), 58–60 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Mizuochi, Y. Konishi, Y. Miyata, T. Inoue, K. Onohara, S. Kametani, T. Sugihara, K. Kubo, H. Yoshida, T. Kobayashi, and T. Ichikawa, “Experimental demonstration of concatenated LDPC and RS codes by FPGAs emulation,” IEEE Photon. Technol. Lett. 21(18), 1302–1304 (2009).
[CrossRef]

M. Arabaci, I. B. Djordjevic, R. Saunders, and R. M. Marcoccia, “Non-binary Quasi-Cyclic LDPC based coded modulation for beyond 100 Gb/s transmission,” IEEE Photon. Technol. Lett. 22(6), 434–436 (2010).
[CrossRef]

IEEE/OSA J, Lightw. Technol. (1)

I. B. Djordjevic and B. Vasic, “Multilevel Coding in M-ary DPSK/Differential QAM High-Speed Optical Transmission with Direct Detection,” IEEE/OSA J, Lightw. Technol. 24(1), 420–428 (2006).
[CrossRef]

IEEE/OSA, J. Lightwave Technol. (1)

I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “Using LDPC-coded modulation and coherent detection for ultra high-speed optical transmission,” IEEE/OSA, J. Lightwave Technol. 25(11), 3619–3625 (2007).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Opt. Express (3)

Other (14)

I. B. Djordjevic, and H. G. Batshon, Lei Xu and T. Wang, “Coded polarization-multiplexed iterative polar modulation (PM-IPM) for beyond 400 Gb/s serial optical transmission,” in Proc. OFC/NFOEC 2010, Paper No. OMK2, San Diego, CA, March 21–25, 2010.

S. J. Johnson, S. R. Weller, “Low-density parity-check codes: design and decoding”, Wiley Encyclopedia of Telecommunications, John Wiley and Sons, 2003.

Bernhard M. J. Leiner, “LDPC codes - a Brief Tutorial,” April 2005.

T. Mizuochi, “Next Generation FEC for optical communication,” Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on, vol., no., pp.1–33, 24–28 Feb. 2008.

R. G. Gallager, Low Density Parity Check Codes, MIT Press, Cambridge, Mass., 1963.

H. Bülow, F. Buchali, G. Thielecke, ”Optical Trellis-coded modulation ”, in Proc. Optical Fiber Commun. Conf. 2004, WM5.

X. Liu, Q. Yang, S. Chandrasekhar, W. Shieh, Y. K. Chen “Transmission of 44-Gb/s coherent optical OFDM signal with Trellis-cded 32-QAM subcarrier modulation”, in Proc. Optical Fiber Commun. Conf. 2010, OMR3.

D. J. C. Mackay, Ldpc database. Available at http://www.inference.phy.cam.ac.uk/mackay/codes/data.html .

Q. Yang, Y. Ma, and W. Shieh, “107 Gb/s coherent optical OFDM reception using orthogonal band multiplexing,” in Proc. Optical Fiber Commun. Conf., 2008, Paper PDP 7.

S.L. Jansen, I. Morita, H. Tanaka, “10×121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1,000 km of SSMF,” in Proc. Optical Fiber Commun. Conf., 2008, Paper PDP 2.

E. Yamada, A. Sano, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, K. Yonenaga, Y. Miyamoto, K. Ishihara, Y. Takatori, T. Yamada, and H.Yamazaki, “1Tb/s (111Gb/s/ch × 10ch) no-guard-interval OOFDM transmission over 2100 km DSF,” OECC/ACOFT Conf. 2008, paper PDP6.

H. Takahashi, A. Al Amin, S.L Jansen, I. Morita, and H. Tanaka, “DWDM transmission with 7.0-bit/(s1Hz) spectral efficiency using 8×65.1-Gbit/s coherent PDM-OFDM signals,” in Proc. Optical Fiber Commun. Conf. 2009, PDPB7.

R. Dischler, and F. Buchali, “Transmission of 1.2 Tb/s continuous waveband PDM‐OFDM‐FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” in Proc. Optical Fiber Commun. Conf. 2009, PDP C2.

S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber,” ECOC’09, post-deadline paper PD2.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for 400 Gb/s LDPC coded CO-OFDM transmission.

Fig. 2
Fig. 2

The Tanner graph representation of the parity-check matrix

Fig. 3
Fig. 3

Back-to-back OSNR sensitivity for 107 Gb/s and 428 Gb/s signal. All the data rates shown are before 7% RS FEC

Fig. 4
Fig. 4

spectrum for 428 Gb/s LDPC-coded 16-QAM at reaches of 960 km.

Tables (1)

Tables Icon

Table 1 Detailed BER for the worst band of 428 Gb/s LDPC-coded 16-QAM signal at reaches of 960 km and 800 km.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

r j i ( 0 ) = 1 2 + 1 2 i ' V j \ i ( 1 2 q i ' j ( 1 ) ) , r j i ( 1 ) = 1 r j i ( 0 )
Q i ( 0 ) = K i ( 1 P i ) j ' C i r j i ( 0 ) , Q i ( 1 ) = K i P i j C i r j i ( 1 )

Metrics