Abstract

We report 50 Gbit/s modulation capability using four silicon micro ring modulators within a footprint of 500 µm2. This is the highest total modulation capability shown in silicon using compact micro-ring modulators. Using the proposed techniques, silicon nanophotonic bandwidths can meet the requirements of future CMOS interconnects by using multiple wavelengths to extend beyond single device speeds.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
    [CrossRef]
  2. D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
    [CrossRef]
  3. A. V. Krishnamoorthy and ., “The integration of silicon photonics and VLSI electronics for computing systems intra-connect,” Proc. SPIE 7220, 72200V (2009).
    [CrossRef]
  4. C. Batten, et al., “Building Manycore Processor-to-DRAM Networks with Monolithic Silicon Photonics,” High-Performance Interconnects, Symposium on, pp. 21–30, 16th IEEE Symposium on High Performance Interconnects, 2008.
  5. R. Beausoleil, et al, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper ITuD2.
  6. A. Shacham, K. Bergman, and L. P. Carloni, On the Design of a Photonic Network-on-Chip, Networks-on-Chip (2007), pp. 53–64.
  7. N. Kirman, et al., “Leveraging Optical Technology in Future Bus-based Chip Multiprocessors,” Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM International Symposium on, vol., no., pp.492–503, 9–13 Dec. 2006.
  8. International Technology Roadmap for Semiconductors, (ITRS 2007).
  9. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  10. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator,” LEOS 2007, IEEE LEOS 2007 Annu. Meeting, Paper WO2, 537–538 (2007).
  11. L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006).
    [CrossRef] [PubMed]
  12. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007).
    [CrossRef] [PubMed]
  13. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  14. G. Gunn, “CMOS photonicsTM - SOI learns a new trick,” in Proceedings of IEEE International SOI Conference Institute of Electrical and Electronics Engineers, New York, (2005), 7–13.
  15. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [CrossRef] [PubMed]
  16. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” Group IV Photonics, 2008 5th IEEE International Conference on, vol., no., pp.4–6, 17–19 Sept. 2008.
  17. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010).
    [CrossRef] [PubMed]
  18. J. Zhang, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “10Gbps monolithic silicon FTTH transceiver without laser diode for a new PON configuration,” Opt. Express 18(5), 5135–5141 (2010).
    [CrossRef] [PubMed]
  19. Silicon carrier dispersion modulators are ultimately limited by the carrier saturation velocity, due to free carrier–optical phonon interactions. In silicon, optical phonons limit the maximum speed of carriers to 10 ps per micron of transit length, which limits the maximum bandwidth to ~100 Gbit/s for a typical transverse carrier transit distance of 1 micron.
  20. S. Manipatruni, Q. Xu, and M. Lipson, “PINIP based high-speed high-extinction ratio micron-size silicon electrooptic modulator,” Opt. Express 15(20), 13035–13042 (2007).
    [CrossRef] [PubMed]
  21. F. Caignet, S. Delmas-Bendhia, and E. Sicard, “The challenge of signal integrity in deep-submicrometer CMOS technology,” Proc. IEEE 89(4), 556–573 (2001).
    [CrossRef]
  22. M. A. Popovic, E. P. Ippen, and F. X. Kartner, “Low-Loss Bloch Waves in Open Structures and Highly Compact, Efficient Si Waveguide-Crossing Arrays,” Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE, vol., no., pp.56–57, 21–25 Oct. 2007.
  23. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23(23), 1855–1857 (1998).
    [CrossRef]
  24. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
    [CrossRef] [PubMed]
  25. S. Manipaturni, K. Preston, L. Chen, and M. Lipson, “Ultra-Low Voltage, Ultra Small Mode Volume Silicon Nanophotonic Modulator. Submitted.
  26. P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
    [CrossRef] [PubMed]
  27. F. Xia, L. Sekaric, and Yu. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  28. T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, F. X. Kaertner, E. P. Ippen, and H. I. Smith, “Fabrication Control of the Resonance Frequencies of High-Index-Contrast Microphotonic Cavities,” in Integrated Photonics Research and Applications/Nanophotonics, (Optical Society of America, 2006), paper JWA3.
  29. SILVACO International, 4701 Patrick Henry Drive, Bldg. 1, Santa Clara, CA 94054.
  30. P. D. Hewitt and G. T. Reed, “Improved modulation performance of a silicon p-i-n device by trench isolation,” J. Lightwave Technol. 19(3), 387–390 (2001) (CrossRef).
    [CrossRef]
  31. B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, “Scaling laws of nonlinear silicon nanophotonics,” Proc. SPIE 5730, 41–51 (2005).
    [CrossRef]
  32. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  33. H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990).
    [CrossRef]
  34. S. M. Sze, Physics of Semiconductor Devices. 2nd ed. New York, NY: Wiley, 1981. ISBN: 047109837X.
  35. M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
    [CrossRef]
  36. The chirp associated with this leading edge transient can play a critical role in determining the distance over which the interconnect can be deployed.
  37. I. Shake, H. Takara, and S. Kawanishi, “Simple Measurement of Eye Diagram and BER using High-Speed Asynchronous Sampling,” J. Lightwave Technol. 22(5), 1296–1302 (2004).
    [CrossRef]
  38. A. Biberman, S. Manipatruni, N. Ophir, K. Bergman, L. Chen, and M. Lipson, “First demonstration of long-haul transmission using silicon microring modulators,” submitted to Opt. Express.
  39. http://www.picosecond.com/product/product.asp?prod_id=94
  40. http://www.shf.de/en/communication/products/rf_broadband_amplifier/40_gbps_rf_amplifier/
  41. J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006).
    [CrossRef] [PubMed]
  42. B. Kim, and V. Stojanovic, “Equalized interconnects for onchip networks: Modeling and optimization framework”. Int’l Conf. on Computer Aided Design, 2007.
  43. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,”, ” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
    [CrossRef]
  44. D. W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, and A. Liu, “Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach-Zehnder interferometers,” Opt. Lett. 33(5), 530–532 (2008).
    [CrossRef] [PubMed]
  45. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
    [CrossRef] [PubMed]
  46. S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33(19), 2185–2187 (2008).
    [CrossRef] [PubMed]
  47. M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” In Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS’09), CPDB10, Baltimore, May 31-June 5 (2009).
  48. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
    [CrossRef] [PubMed]

2010 (5)

2009 (2)

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

A. V. Krishnamoorthy and ., “The integration of silicon photonics and VLSI electronics for computing systems intra-connect,” Proc. SPIE 7220, 72200V (2009).
[CrossRef]

2008 (2)

2007 (6)

2006 (5)

2005 (1)

B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, “Scaling laws of nonlinear silicon nanophotonics,” Proc. SPIE 5730, 41–51 (2005).
[CrossRef]

2004 (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

I. Shake, H. Takara, and S. Kawanishi, “Simple Measurement of Eye Diagram and BER using High-Speed Asynchronous Sampling,” J. Lightwave Technol. 22(5), 1296–1302 (2004).
[CrossRef]

2001 (2)

F. Caignet, S. Delmas-Bendhia, and E. Sicard, “The challenge of signal integrity in deep-submicrometer CMOS technology,” Proc. IEEE 89(4), 556–573 (2001).
[CrossRef]

P. D. Hewitt and G. T. Reed, “Improved modulation performance of a silicon p-i-n device by trench isolation,” J. Lightwave Technol. 19(3), 387–390 (2001) (CrossRef).
[CrossRef]

1998 (1)

1990 (1)

H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990).
[CrossRef]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Amberg, P.

Apsel, A. B.

Asghari, M.

Barkai, A.

Basak, J.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,”, ” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[CrossRef]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Bergman, K.

A. Biberman, S. Manipatruni, N. Ophir, K. Bergman, L. Chen, and M. Lipson, “First demonstration of long-haul transmission using silicon microring modulators,” submitted to Opt. Express.

Biberman, A.

A. Biberman, S. Manipatruni, N. Ophir, K. Bergman, L. Chen, and M. Lipson, “First demonstration of long-haul transmission using silicon microring modulators,” submitted to Opt. Express.

Block, B. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Boyraz, O.

B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, “Scaling laws of nonlinear silicon nanophotonics,” Proc. SPIE 5730, 41–51 (2005).
[CrossRef]

Caignet, F.

F. Caignet, S. Delmas-Bendhia, and E. Sicard, “The challenge of signal integrity in deep-submicrometer CMOS technology,” Proc. IEEE 89(4), 556–573 (2001).
[CrossRef]

Chang, P. L. D.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Chen, L.

S. Manipaturni, K. Preston, L. Chen, and M. Lipson, “Ultra-Low Voltage, Ultra Small Mode Volume Silicon Nanophotonic Modulator. Submitted.

A. Biberman, S. Manipatruni, N. Ophir, K. Bergman, L. Chen, and M. Lipson, “First demonstration of long-haul transmission using silicon microring modulators,” submitted to Opt. Express.

Chetrit, Y.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,”, ” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

Ciftcioglu, B.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Cunningham, J. E.

Delmas-Bendhia, S.

F. Caignet, S. Delmas-Bendhia, and E. Sicard, “The challenge of signal integrity in deep-submicrometer CMOS technology,” Proc. IEEE 89(4), 556–573 (2001).
[CrossRef]

Dimitropoulos, D.

B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, “Scaling laws of nonlinear silicon nanophotonics,” Proc. SPIE 5730, 41–51 (2005).
[CrossRef]

Dokania, R. K.

Dong, P.

Elek, N.

Fan, S.

Feng, D.

Feng, N.-N.

Foster, M. A.

Gaeta, A. L.

Green, W. M.

Haus, H. A.

Hewitt, P. D.

Ho, R.

Huang, H. C.

H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990).
[CrossRef]

Izhaky, N.

Jalali, B.

B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, “Scaling laws of nonlinear silicon nanophotonics,” Proc. SPIE 5730, 41–51 (2005).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Jones, R.

D. W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, and A. Liu, “Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach-Zehnder interferometers,” Opt. Lett. 33(5), 530–532 (2008).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Kawanishi, S.

Kern, A. M.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Kim, D. W.

Krishnamoorthy, A. V.

Kwong, D. L.

Lexau, J.

Li, G.

Liang, H.

Liao, J. T. S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Liao, L.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,”, ” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liao, S.

Liow, T. Y.

Lipson, M.

S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood-Droz, C. B. Poitras, A. B. Apsel, and M. Lipson, “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Opt. Lett. 33(19), 2185–2187 (2008).
[CrossRef] [PubMed]

P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[CrossRef] [PubMed]

S. Manipatruni, Q. Xu, and M. Lipson, “PINIP based high-speed high-extinction ratio micron-size silicon electrooptic modulator,” Opt. Express 15(20), 13035–13042 (2007).
[CrossRef] [PubMed]

B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
[CrossRef] [PubMed]

J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

A. Biberman, S. Manipatruni, N. Ophir, K. Bergman, L. Chen, and M. Lipson, “First demonstration of long-haul transmission using silicon microring modulators,” submitted to Opt. Express.

S. Manipaturni, K. Preston, L. Chen, and M. Lipson, “Ultra-Low Voltage, Ultra Small Mode Volume Silicon Nanophotonic Modulator. Submitted.

Liu, A.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,”, ” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[CrossRef]

D. W. Kim, A. Barkai, R. Jones, N. Elek, H. Nguyen, and A. Liu, “Silicon-on-insulator eight-channel optical multiplexer based on a cascade of asymmetric Mach-Zehnder interferometers,” Opt. Lett. 33(5), 530–532 (2008).
[CrossRef] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lo, G. Q.

Luo, Y.

Manipatruni, S.

Manipaturni, S.

S. Manipaturni, K. Preston, L. Chen, and M. Lipson, “Ultra-Low Voltage, Ultra Small Mode Volume Silicon Nanophotonic Modulator. Submitted.

Manolatou, C.

Mekis, A.

Miller, D. A. B.

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Mitsugi, S.

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
[CrossRef]

Mohammed, E.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Nguyen, H.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
[CrossRef]

Ophir, N.

A. Biberman, S. Manipatruni, N. Ophir, K. Bergman, L. Chen, and M. Lipson, “First demonstration of long-haul transmission using silicon microring modulators,” submitted to Opt. Express.

Palermo, S.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Paniccia, M.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,”, ” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Pinckney, N.

Pinguet, T.

Poitras, C. B.

Poon, A. W.

Preble, S. F.

Preston, K.

S. Manipaturni, K. Preston, L. Chen, and M. Lipson, “Ultra-Low Voltage, Ultra Small Mode Volume Silicon Nanophotonic Modulator. Submitted.

Raghunathan, V.

B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, “Scaling laws of nonlinear silicon nanophotonics,” Proc. SPIE 5730, 41–51 (2005).
[CrossRef]

Raj, K.

Reed, G. T.

Reshotko, M. R.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Robinson, J. T.

Rooks, M. J.

Rubin, D.

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,”, ” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Schmidt, B.

Schmidt, B. S.

Sekaric, L.

Shafiiha, R.

Shake, I.

Shakya, J.

Sharping, J. E.

Sherwood-Droz, N.

Shi, J.

Sicard, E.

F. Caignet, S. Delmas-Bendhia, and E. Sicard, “The challenge of signal integrity in deep-submicrometer CMOS technology,” Proc. IEEE 89(4), 556–573 (2001).
[CrossRef]

Soma, M.

H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990).
[CrossRef]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Takara, H.

Thacker, H.

Turner, A. C.

Villeneuve, P. R.

Vlasov, Y. A.

Vlasov, Yu. A.

F. Xia, L. Sekaric, and Yu. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Yu. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Xu, Q.

Yee, S.

H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990).
[CrossRef]

Young, I. A.

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

Zhang, J.

Zheng, X.

Zhou, L.

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform,”, ” IEEE J. Sel. Top. Quantum Electron. 16(1), 23–32 (2010).
[CrossRef]

IEEE J. Solid-state Circuits (1)

I. A. Young, E. Mohammed, J. T. S. Liao, A. M. Kern, S. Palermo, B. A. Block, M. R. Reshotko, and P. L. D. Chang, “Optical I/O Technology for Tera-Scale Computing,” IEEE J. Solid-state Circuits 45(1), 235–248 (2010).
[CrossRef]

J. Appl. Phys. (1)

H. C. Huang, S. Yee, and M. Soma, “Quantum calculations of the change of refractive index due to free carriers in silicon with nonparabolic band structure,” J. Appl. Phys. 67(4), 2033–2039 (1990).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

F. Xia, L. Sekaric, and Yu. A. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Nature (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Opt. Express (12)

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006).
[CrossRef] [PubMed]

B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007).
[CrossRef] [PubMed]

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[CrossRef] [PubMed]

X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010).
[CrossRef] [PubMed]

J. Zhang, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “10Gbps monolithic silicon FTTH transceiver without laser diode for a new PON configuration,” Opt. Express 18(5), 5135–5141 (2010).
[CrossRef] [PubMed]

S. Manipatruni, Q. Xu, and M. Lipson, “PINIP based high-speed high-extinction ratio micron-size silicon electrooptic modulator,” Opt. Express 15(20), 13035–13042 (2007).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 (2006).
[CrossRef] [PubMed]

P. Dong, S. F. Preble, and M. Lipson, “All-optical compact silicon comb switch,” Opt. Express 15(15), 9600–9605 (2007).
[CrossRef] [PubMed]

J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006).
[CrossRef] [PubMed]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[CrossRef] [PubMed]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (1)

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
[CrossRef]

Proc. IEEE (2)

F. Caignet, S. Delmas-Bendhia, and E. Sicard, “The challenge of signal integrity in deep-submicrometer CMOS technology,” Proc. IEEE 89(4), 556–573 (2001).
[CrossRef]

D. A. B. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97, 1166–1185 (2009).
[CrossRef]

Proc. SPIE (2)

A. V. Krishnamoorthy and ., “The integration of silicon photonics and VLSI electronics for computing systems intra-connect,” Proc. SPIE 7220, 72200V (2009).
[CrossRef]

B. Jalali, O. Boyraz, D. Dimitropoulos, and V. Raghunathan, “Scaling laws of nonlinear silicon nanophotonics,” Proc. SPIE 5730, 41–51 (2005).
[CrossRef]

Other (20)

T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, F. X. Kaertner, E. P. Ippen, and H. I. Smith, “Fabrication Control of the Resonance Frequencies of High-Index-Contrast Microphotonic Cavities,” in Integrated Photonics Research and Applications/Nanophotonics, (Optical Society of America, 2006), paper JWA3.

SILVACO International, 4701 Patrick Henry Drive, Bldg. 1, Santa Clara, CA 94054.

The chirp associated with this leading edge transient can play a critical role in determining the distance over which the interconnect can be deployed.

S. M. Sze, Physics of Semiconductor Devices. 2nd ed. New York, NY: Wiley, 1981. ISBN: 047109837X.

M. A. Popovic, E. P. Ippen, and F. X. Kartner, “Low-Loss Bloch Waves in Open Structures and Highly Compact, Efficient Si Waveguide-Crossing Arrays,” Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE, vol., no., pp.56–57, 21–25 Oct. 2007.

Silicon carrier dispersion modulators are ultimately limited by the carrier saturation velocity, due to free carrier–optical phonon interactions. In silicon, optical phonons limit the maximum speed of carriers to 10 ps per micron of transit length, which limits the maximum bandwidth to ~100 Gbit/s for a typical transverse carrier transit distance of 1 micron.

S. Manipaturni, K. Preston, L. Chen, and M. Lipson, “Ultra-Low Voltage, Ultra Small Mode Volume Silicon Nanophotonic Modulator. Submitted.

C. Batten, et al., “Building Manycore Processor-to-DRAM Networks with Monolithic Silicon Photonics,” High-Performance Interconnects, Symposium on, pp. 21–30, 16th IEEE Symposium on High Performance Interconnects, 2008.

R. Beausoleil, et al, “A Nanophotonic Interconnect for High-Performance Many-Core Computation,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008), paper ITuD2.

A. Shacham, K. Bergman, and L. P. Carloni, On the Design of a Photonic Network-on-Chip, Networks-on-Chip (2007), pp. 53–64.

N. Kirman, et al., “Leveraging Optical Technology in Future Bus-based Chip Multiprocessors,” Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM International Symposium on, vol., no., pp.492–503, 9–13 Dec. 2006.

International Technology Roadmap for Semiconductors, (ITRS 2007).

G. Gunn, “CMOS photonicsTM - SOI learns a new trick,” in Proceedings of IEEE International SOI Conference Institute of Electrical and Electronics Engineers, New York, (2005), 7–13.

M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” Group IV Photonics, 2008 5th IEEE International Conference on, vol., no., pp.4–6, 17–19 Sept. 2008.

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator,” LEOS 2007, IEEE LEOS 2007 Annu. Meeting, Paper WO2, 537–538 (2007).

B. Kim, and V. Stojanovic, “Equalized interconnects for onchip networks: Modeling and optimization framework”. Int’l Conf. on Computer Aided Design, 2007.

A. Biberman, S. Manipatruni, N. Ophir, K. Bergman, L. Chen, and M. Lipson, “First demonstration of long-haul transmission using silicon microring modulators,” submitted to Opt. Express.

http://www.picosecond.com/product/product.asp?prod_id=94

http://www.shf.de/en/communication/products/rf_broadband_amplifier/40_gbps_rf_amplifier/

M. Watts, W. Zortman, D. Trotter, G. Nielson, D. Luck, and R. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” In Conference on Lasers and Electro-Optics / Quantum Electronics and Laser Science Conference (CLEO/QELS’09), CPDB10, Baltimore, May 31-June 5 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Microring modulator array (interleaved SEM Image).

Fig. 2
Fig. 2

SEM image of a 6 µm silicon micro-ring modulator created by embedding a micro-ring in a PIN junction. A 50 nm slab is used to electrically contact the waveguide for carrier transport.

Fig. 3
Fig. 3

(a) Schematic of 4 microring modulators coupled to a single waveguide. The inset shows the waveguide cross-section with the doping topology (b) Transmission spectra of 4 microring modulators for quasi-TE polarized light. The radii of the micro-rings are offset by δ = 20 nm.

Fig. 4
Fig. 4

Schematic of the electro-optic modeling scheme.

Fig. 5
Fig. 5

(a) The transient optical response is shown by the solid line. The transient at the leading edge is due to the interference between light leaking from the cavity with the light coupled straight through the cavity. Dotted lines show the injected charge density for the applied voltages. (b) Time for carriers to drift across 1 micron distance from the center of the waveguide to the doped regions.

Fig. 6
Fig. 6

Driving mechanism for decoupling carrier rise and fall times of an injection modulator. a) applied voltage and charge density response b) The optical response of the modulator. A pre-pulsed signal is applied such that the optical rise time transients are identical while a sharp the fall time transient is achieved during turn-off.

Fig. 7
Fig. 7

Driving mechanism for decoupling carrier rise and fall times of an injection. The signal source is divided to generate pre-emphasis signals. The amplifiers are used to control the relative amplitude of the pulses and the data. The pulses are added to the data with appropriate delay.

Fig. 8
Fig. 8

Optical eye diagrams at 12.5 Gbit/s for 4 micro-ring modulators at a)1562.3 nm b)1558.1 nm c)1555.0 nm d) 1550.7 nm. The variances in the optical high and low state and difference in powers are measured to estimated the quality factor of the eye diagrams. A peak to peak voltage of 3.0 volts was applied.

Tables (1)

Tables Icon

Table 1 Electro-optic Simulation Parameters for Silicon Carrier Injection Modulator

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n e + Δ n h = ( 8.8 × 10 22 Δ n + 8.5 × 10 18 Δ p 0.8 ) Δ α = Δ α e + Δ α h = 8.5 × 10 18 Δ n + 6.0 × 10 18 Δ p
V h o l d = V t + I R + k T e α log e ( I I 0 + 1 )
ω k = r n e f f ( ω 0 ) ( r + δ r k ) n e f f ( ω k ) ω 0
δ r k = r ( ω 0 n e f f ( ω 0 ) ( ω 0 + δ ω k ) n e f f ( ω 0 + δ ω k ) 1 )
Δ ω = ( c r n e f f ( ω 2 ) Δ n e f f n e f f ( ω 2 ) ω 2 )
k = Δ ω δ ω = 1 δ ω ( c r n e f f ( ω 2 ) Δ n e f f n e f f ( ω 2 ) ω 2 )
β = k B p = k B 0.12 log e ( 56.6 z π )
p = 0.12 log e ( 56.6 z π )

Metrics