Abstract

Single femtosecond pulsed laser damage can be confined radially to regions smaller than the focus spot size due to the highly nonlinear mechanisms for energy absorption and ablation in transparent dielectrics. Along the propagation axis, however, we show that channels can be machined much deeper than the Rayleigh range of the laser focus. Using focused ion beam cross sections and acetate imprints, we analyze these channels and show that spherical aberration is not the primary source for this elongated damage, which is likely caused by microscale filamentation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005).
    [CrossRef] [PubMed]
  2. S. Lee, J. L. Bull, and A. J. Hunt, “Acoustic limitations on the efficiency of machining by femtosecond laser-induced optical breakdown,” Appl. Phys. Lett. 91(2), 023111 (2007).
    [CrossRef]
  3. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
    [CrossRef]
  4. A. Marcinkevi Ius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [CrossRef]
  5. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
    [CrossRef]
  6. J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, “Submicrometer pore-based characterization and quantification of antibody-virus interactions,” Small 2(8-9), 967–972 (2006).
    [CrossRef] [PubMed]
  7. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
    [CrossRef]
  8. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of Submicron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
    [CrossRef]
  9. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26(23), 1912–1914 (2001).
    [CrossRef]
  10. S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett. 91(14), 141111 (2007).
    [CrossRef]
  11. Y. V. White, X. X. Li, Z. Sikorski, L. M. Davis, and W. Hofmeister, “Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO2,” Opt. Express 16(19), 14411–14420 (2008).
    [CrossRef] [PubMed]
  12. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005).
    [CrossRef]
  13. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep., Phys. Lett. 441, 47–189 (2007).
  14. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
    [CrossRef]
  15. C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441–1443 (2004).
    [CrossRef]
  16. Y. R. Shen, Principles of Nonlinear Optics (J. Wiley, 1984).
  17. W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
    [CrossRef]
  18. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [CrossRef] [PubMed]
  19. J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
    [CrossRef]

2008 (1)

2007 (3)

S. Lee, J. L. Bull, and A. J. Hunt, “Acoustic limitations on the efficiency of machining by femtosecond laser-induced optical breakdown,” Appl. Phys. Lett. 91(2), 023111 (2007).
[CrossRef]

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep., Phys. Lett. 441, 47–189 (2007).

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett. 91(14), 141111 (2007).
[CrossRef]

2006 (2)

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
[CrossRef]

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, “Submicrometer pore-based characterization and quantification of antibody-virus interactions,” Small 2(8-9), 967–972 (2006).
[CrossRef] [PubMed]

2005 (3)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005).
[CrossRef] [PubMed]

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005).
[CrossRef]

2004 (2)

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441–1443 (2004).
[CrossRef]

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[CrossRef]

2003 (2)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

2002 (1)

W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

2001 (3)

1995 (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of Submicron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Akozbek, N.

W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Becker, A.

W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Bowden, C. M.

W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Brodeur, A.

Bull, J. L.

S. Lee, J. L. Bull, and A. J. Hunt, “Acoustic limitations on the efficiency of machining by femtosecond laser-induced optical breakdown,” Appl. Phys. Lett. 91(2), 023111 (2007).
[CrossRef]

Chin, S. L.

W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Choi, T. Y.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[CrossRef]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep., Phys. Lett. 441, 47–189 (2007).

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Davis, L. M.

Du, D.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of Submicron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Dutta, S. K.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of Submicron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

García, J. F.

Grigoropoulos, C. P.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[CrossRef]

Hasselbrink, E. F.

K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005).
[CrossRef] [PubMed]

Herbstman, J. F.

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett. 91(14), 141111 (2007).
[CrossRef]

Hofmeister, W.

Hunt, A. J.

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett. 91(14), 141111 (2007).
[CrossRef]

S. Lee, J. L. Bull, and A. J. Hunt, “Acoustic limitations on the efficiency of machining by femtosecond laser-induced optical breakdown,” Appl. Phys. Lett. 91(2), 023111 (2007).
[CrossRef]

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, “Submicrometer pore-based characterization and quantification of antibody-virus interactions,” Small 2(8-9), 967–972 (2006).
[CrossRef] [PubMed]

K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005).
[CrossRef] [PubMed]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Hwang, D. J.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[CrossRef]

Itoh, K.

Jamison, A. O.

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441–1443 (2004).
[CrossRef]

Jiang, Y. Y.

Joglekar, A.

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett. 91(14), 141111 (2007).
[CrossRef]

Joglekar, A. P.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Juodkazis, S.

Kamata, M.

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005).
[CrossRef]

Ke, K.

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, “Submicrometer pore-based characterization and quantification of antibody-virus interactions,” Small 2(8-9), 967–972 (2006).
[CrossRef] [PubMed]

K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005).
[CrossRef] [PubMed]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

Kudryashov, S. I.

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett. 91(14), 141111 (2007).
[CrossRef]

Kuroda, D.

Lee, S.

S. Lee, J. L. Bull, and A. J. Hunt, “Acoustic limitations on the efficiency of machining by femtosecond laser-induced optical breakdown,” Appl. Phys. Lett. 91(2), 023111 (2007).
[CrossRef]

Li, X. X.

Li, Y.

Liu, H.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Liu, W.

W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Marcinkevi Ius, A.

Matsuo, S.

Mayer, M.

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, “Submicrometer pore-based characterization and quantification of antibody-virus interactions,” Small 2(8-9), 967–972 (2006).
[CrossRef] [PubMed]

Mazur, E.

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441–1443 (2004).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[CrossRef]

McDonald, J. P.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
[CrossRef]

Meyhöfer, E.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Misawa, H.

Mistry, V. R.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
[CrossRef]

Miwa, M.

Mourou, G.

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett. 91(14), 141111 (2007).
[CrossRef]

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of Submicron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep., Phys. Lett. 441, 47–189 (2007).

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Nishii, J.

Obara, M.

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005).
[CrossRef]

Petit, S.

W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Pronko, P. P.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of Submicron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Ray, K. E.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
[CrossRef]

Rudd, J. V.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of Submicron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441–1443 (2004).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001).
[CrossRef]

Sikorski, Z.

Spooner, G. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Squier, J.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of Submicron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Toratani, E.

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005).
[CrossRef]

Uram, J. D.

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, “Submicrometer pore-based characterization and quantification of antibody-virus interactions,” Small 2(8-9), 967–972 (2006).
[CrossRef] [PubMed]

Watanabe, M.

Watanabe, W.

White, Y. V.

Yalisove, S. M.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
[CrossRef]

Yamada, K.

Anal. Chem. (1)

K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Appl. Phys. Lett. (5)

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005).
[CrossRef]

S. Lee, J. L. Bull, and A. J. Hunt, “Acoustic limitations on the efficiency of machining by femtosecond laser-induced optical breakdown,” Appl. Phys. Lett. 91(2), 023111 (2007).
[CrossRef]

C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441–1443 (2004).
[CrossRef]

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006).
[CrossRef]

S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett. 91(14), 141111 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004).
[CrossRef]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002).
[CrossRef]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of Submicron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rep., Phys. Lett. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep., Phys. Lett. 441, 47–189 (2007).

Phys. Rev. B (1)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[CrossRef]

Small (1)

J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, “Submicrometer pore-based characterization and quantification of antibody-virus interactions,” Small 2(8-9), 967–972 (2006).
[CrossRef] [PubMed]

Other (1)

Y. R. Shen, Principles of Nonlinear Optics (J. Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

a) An illustration of the machining geometry, with the front and back side of the coverslip indicated. b) A damaged sample examined under a dual beam FIB/SEM. The FIB is placed perpendicular to the sample surface and the SEM is offset at a 52° angle. The sample is covered with a few hundred nanometers of platinum to protect the surface from unintended ion damage. The FIB removes a wedge from the sample, exposing the nanochannel cross section. c) An example cross section for back side machining. d) An example cross section for front side machining. Both images show damage at 67 J/cm2. Irregularities along the axial dimension of these channels are presumably the result of variations in FIB milling such that channels are not uniformly bisected. Scale bars indicate 1 μm.

Fig. 2
Fig. 2

Back side machining sample showing single pulse laser damage at 74 J/cm2 replicated using an acetate imprint. Pulses are focused 500 nm deeper with each row going from bottom to top in the vertical direction and 50 nm deeper with each pulse from right to left in the image. This image was taken at a sample tilt angle of 45°. The scale bar is 10 μm.

Fig. 3
Fig. 3

Back side machining sample measurements showing imprint length vs. focal depth, as measured from Fig. 2. The least-squares regression line is plotted on the figure as a solid line. The slope of this line is 1.07 ± 0.04. Because the precise location of the focus is difficult to determine with nanometer precision, the zero depth corresponds to the first observation of damage on the replica.

Fig. 4
Fig. 4

Back side machining sample measurements show that the maximum channel length increases with increasing fluence at low powers, but plateaus at ~8 µm for fluences above ~80 J/cm2. The maximum channel length is obtained by taking the average of the four longest channels observed at each fluence.

Fig. 5
Fig. 5

Front side machining damage at 118 J/cm2 replicated using an acetate imprint. Pulses are focused 500 nm deeper with each row going from bottom to top in the vertical direction and 50 nm deeper with each pulse towards the right side of the image. This image was taken at a sample tilt angle of 45°. The scale bar is 10 μm.

Fig. 6
Fig. 6

Front side machining imprint length vs. focal depth as measured from Fig. 5 at 118 J/cm2.

Fig. 7
Fig. 7

Front side machining maximum channel length vs. fluence. Maximum channel length is measured using the average of the four longest channels observed at each fluence.

Metrics