Abstract

The nonlinear properties of a low loss hydrogenated amorphous silicon core fiber have been characterized for transmission of high power pulses at 1540nm. Numerical modelling of the pulse propagation in the amorphous core material was used to establish the two-photon absorption, free-carrier absorption and the nonlinear refractive index, which were found to be larger than the values typical for crystalline silicon. Calculation of a nonlinear figure of merit demonstrates the potential for these hydrogenated amorphous silicon core fibers to be used in nonlinear silicon photonics applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali, and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
    [CrossRef]
  2. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
    [CrossRef] [PubMed]
  3. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675–18683 (2008).
    [CrossRef]
  4. B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48, 100501 (2009).
    [CrossRef]
  5. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
    [CrossRef]
  6. K. Narayanan, and S. F. Preble, “Optical nonlinearities in hydrogenated amorphous silicon waveguides,” Opt. Express 18, 8998–9005 (2010).
    [CrossRef] [PubMed]
  7. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18, 9809–9814 (2010).
    [CrossRef] [PubMed]
  8. R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
    [CrossRef]
  9. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002 (1998).
    [CrossRef]
  10. M. H. Brodsky, M. Cardon, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
    [CrossRef]
  11. L. Yin, and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007).
    [CrossRef] [PubMed]
  12. R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40, R249–R271 (2007).
    [CrossRef]
  13. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18, 5668–5673 (2010).
    [CrossRef] [PubMed]
  14. N. Minamikawa, and K. Tanaka, “Nonlinear optical properties of hydrogenated amorphous Si films probed by a novel z-scan technique,” Jpn. J. Appl. Phys. 45, L960–L962 (2006).
    [CrossRef]
  15. H. K. Tsang, C. S. Wong, and T. K. Liang, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
    [CrossRef]
  16. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
    [CrossRef]
  17. R. A. Soref, and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [CrossRef]
  18. P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, Jr., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
    [CrossRef]
  19. K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989).
    [CrossRef]

2010

2009

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[CrossRef]

B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48, 100501 (2009).
[CrossRef]

2008

2007

L. Yin, and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007).
[CrossRef] [PubMed]

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40, R249–R271 (2007).
[CrossRef]

2006

N. Minamikawa, and K. Tanaka, “Nonlinear optical properties of hydrogenated amorphous Si films probed by a novel z-scan technique,” Jpn. J. Appl. Phys. 45, L960–L962 (2006).
[CrossRef]

B. Jalali, and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

2004

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[CrossRef]

2002

H. K. Tsang, C. S. Wong, and T. K. Liang, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

1998

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[CrossRef]

1992

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, Jr., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

1989

K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989).
[CrossRef]

1987

R. A. Soref, and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

1977

M. H. Brodsky, M. Cardon, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[CrossRef]

Agrawal, G. P.

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Badding, J. V.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Ballato, J.

Baril, N. F.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Beals, M.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[CrossRef]

Bennett, B. R.

R. A. Soref, and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Brodsky, M. H.

M. H. Brodsky, M. Cardon, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[CrossRef]

Caluori, V.

B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48, 100501 (2009).
[CrossRef]

Cardon, M.

M. H. Brodsky, M. Cardon, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[CrossRef]

Cheng, J.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[CrossRef]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[CrossRef]

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Cuomo, J. J.

M. H. Brodsky, M. Cardon, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[CrossRef]

Daw, M.

De Rosa, R.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[CrossRef]

Dekker, R.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40, R249–R271 (2007).
[CrossRef]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[CrossRef]

DeLong, K. W.

K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989).
[CrossRef]

Driessen, A.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40, R249–R271 (2007).
[CrossRef]

Ellison, M.

Elshaari, A. W.

Fathpour, S.

Fauchet, P. M.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, Jr., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Forst, M.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40, R249–R271 (2007).
[CrossRef]

Foy, P.

Gopalan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Hasama, T.

Hawkins, T.

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Healy, N.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[CrossRef]

Hulin, D.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, Jr., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

Ishikawa, H.

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Jalali, B.

Kamei, T.

Kawashima, H.

Kimerling, L. C.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[CrossRef]

Kintaka, K.

Kokuoz, B.

Lagonigro, L.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[CrossRef]

Liang, T. K.

H. K. Tsang, C. S. Wong, and T. K. Liang, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

McComber, K.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[CrossRef]

McMillen, C.

Michel, J.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[CrossRef]

Minamikawa, N.

N. Minamikawa, and K. Tanaka, “Nonlinear optical properties of hydrogenated amorphous Si films probed by a novel z-scan technique,” Jpn. J. Appl. Phys. 45, L960–L962 (2006).
[CrossRef]

Mori, M.

Mourchid, A.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, Jr., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

Narayanan, K.

Nighan, W. L.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, Jr., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

Ogasawara, T.

Okano, M.

Peacock, A. C.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[CrossRef]

Pickrell, G.

B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48, 100501 (2009).
[CrossRef]

Powers, D. R.

Preble, S. F.

Rao, A. M.

Rendina, I.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[CrossRef]

Reppert, J.

Rice, R. R.

Rieger, G. W.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[CrossRef]

Rochford, K. B.

K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989).
[CrossRef]

Rubino, A.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[CrossRef]

Sakakibara, Y.

Sazio, P. J. A.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Scott, B.

B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48, 100501 (2009).
[CrossRef]

Sharma, S.

Shoji, Y.

Shori, R.

Soref, R. A.

R. A. Soref, and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Sparacin, D. K.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[CrossRef]

Sparks, J. R.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[CrossRef]

Stafsudd, O.

Stegeman, G. I.

K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989).
[CrossRef]

Stolen, R.

Suda, S.

Sun, R.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[CrossRef]

Tanaka, K.

N. Minamikawa, and K. Tanaka, “Nonlinear optical properties of hydrogenated amorphous Si films probed by a novel z-scan technique,” Jpn. J. Appl. Phys. 45, L960–L962 (2006).
[CrossRef]

Terzini, E.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[CrossRef]

Tsang, H. K.

H. K. Tsang, C. S. Wong, and T. K. Liang, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Usechak, N.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40, R249–R271 (2007).
[CrossRef]

Vanderhaghen, R.

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, Jr., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

Virk, K. S.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[CrossRef]

Wang, K.

B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48, 100501 (2009).
[CrossRef]

Won, D.-J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Wong, C. S.

H. K. Tsang, C. S. Wong, and T. K. Liang, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Yin, L.

Young, J. F.

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[CrossRef]

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010).
[CrossRef]

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett. 94, 141108 (2009).
[CrossRef]

H. K. Tsang, C. S. Wong, and T. K. Liang, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5μm pulses in high-index contrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902 (2004).
[CrossRef]

K. W. DeLong, K. B. Rochford, and G. I. Stegeman, “Effect of two-photon absorption on all-optical guided-wave devices,” Appl. Phys. Lett. 55, 1823–1825 (1989).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref, and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 997–1002 (1998).
[CrossRef]

J. Lightwave Technol.

J. Non-Cryst. Solids

P. M. Fauchet, D. Hulin, R. Vanderhaghen, A. Mourchid, and W. L. Nighan, Jr., “The properties of free carriers in amorphous silicon,” J. Non-Cryst. Solids 141, 76–87 (1992).
[CrossRef]

J. Phys. D Appl. Phys.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40, R249–R271 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

N. Minamikawa, and K. Tanaka, “Nonlinear optical properties of hydrogenated amorphous Si films probed by a novel z-scan technique,” Jpn. J. Appl. Phys. 45, L960–L962 (2006).
[CrossRef]

Opt. Eng.

B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng. 48, 100501 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

M. H. Brodsky, M. Cardon, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B 16, 3556–3571 (1977).
[CrossRef]

Science

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311, 1583–1586 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) SEM micrograph of the silicon fiber with the cladding etched from the core to facilitate imaging; scale bar 2µm. (b) Raman spectrum for the amorphous silicon core labelled with the phonon modes. Inset shows the Si-H stretching mode.

Fig. 2.
Fig. 2.

(a) Linear loss measurements as a function of wavelength. (b) Normalized output power as a function of coupled input peak power showing the onset of nonlinear absorption. The solid green curve is the simulated fit obtained via solving Eqs. (2) and (3).

Fig. 3.
Fig. 3.

Spectral evolution as a function of peak input coupled power (dashed blue curves). The red curves are the simulated fits obtained via solving Eqs. (1) and (2).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A ( z , t ) z = i β 2 2 2 A ( z , t ) t 2 + i γ A ( z , t ) 2 A ( z , t ) 1 2 ( σ f + α l ) A ( z , t ) ,
N c ( z , t ) t = β TPA 2 h v 0 A ( z , t ) 4 A eff 2 N c ( z , t ) τ c ,
dI ( z , t ) dz = α l I ( z , t ) β TPA I 2 ( z , t ) σ N c ( z , t ) I ( z , t ) ,
T FOM = 2 λ β TPA n 2 .

Metrics